
The value of $\tan {75}^{\circ} - \cot {75}^{\circ} $ is-
A. $2\sqrt 3 $
B. $3\sqrt 2 $
C. 3
D. 1
Answer
610.2k+ views
Hint: We will use the formulas for various trigonometric functions which are given below-
$
\dfrac{{\sin x}}{{\cos x}} = \tan x \\
\cos 2x = {\cos ^2}x - {\sin ^2}x \\
\sin 2x = 2\sin x\cos x \\
$
Complete step-by-step solution -
To find the value of the given expression, we will first convert it in terms of sine and cosine functions and then solve further as-
$
= \dfrac{{\sin {{75}^o}}}{{\cos {{75}^o}}} - \dfrac{{\cos {{75}^o}}}{{\sin {{75}^o}}} \\
= \dfrac{{{{\sin }^2}{{75}^o} - {{\cos }^2}{{75}^o}}}{{\sin {{75}^o}\cos {{75}^o}}} \\
$
We will multiply and divide the expression by 2-
$ = \dfrac{{ - 2\left( {{{\cos }^2}{{75}^o} - \sin {{75}^o}} \right)}}{{2\sin {{75}^o}\cos {{75}^o}}}$
Applying the formula for cos2x and sin2x,
$
= \dfrac{{ - 2\cos {{150}^{\text{o}}}}}{{\sin {{150}^{\text{o}}}}} \\
= - 2\cot {150^{\text{o}}} = - 2\cot \left( {{{180}^{\text{o}}} - {{30}^{\text{o}}}} \right) \\
Using\;\cot \left( {180 - {\text{x}}} \right) = - cotx \\
= 2\cot {30^{\text{o}}} = 2\sqrt 3 \\
$
This is the required answer. The correct option is A.
Note: Instead of using this method, we can use a more calculative method by writing $75^o$ as $(45 + 30)^o$ and applying the angle difference formula as-
$
= \tan {\left( {45 + 30} \right)^{\text{o}}} - \dfrac{1}{{\tan {{\left( {45 + 30} \right)}^{\text{o}}}}} \\
= \dfrac{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}}{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}} - \dfrac{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}}{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}} \\
Applying\;the\;values - \\
= \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - \dfrac{1}{{\sqrt 3 }}}} - \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + \dfrac{1}{{\sqrt 3 }}}} = 2\sqrt 3 \\
$
$
\dfrac{{\sin x}}{{\cos x}} = \tan x \\
\cos 2x = {\cos ^2}x - {\sin ^2}x \\
\sin 2x = 2\sin x\cos x \\
$
Complete step-by-step solution -
To find the value of the given expression, we will first convert it in terms of sine and cosine functions and then solve further as-
$
= \dfrac{{\sin {{75}^o}}}{{\cos {{75}^o}}} - \dfrac{{\cos {{75}^o}}}{{\sin {{75}^o}}} \\
= \dfrac{{{{\sin }^2}{{75}^o} - {{\cos }^2}{{75}^o}}}{{\sin {{75}^o}\cos {{75}^o}}} \\
$
We will multiply and divide the expression by 2-
$ = \dfrac{{ - 2\left( {{{\cos }^2}{{75}^o} - \sin {{75}^o}} \right)}}{{2\sin {{75}^o}\cos {{75}^o}}}$
Applying the formula for cos2x and sin2x,
$
= \dfrac{{ - 2\cos {{150}^{\text{o}}}}}{{\sin {{150}^{\text{o}}}}} \\
= - 2\cot {150^{\text{o}}} = - 2\cot \left( {{{180}^{\text{o}}} - {{30}^{\text{o}}}} \right) \\
Using\;\cot \left( {180 - {\text{x}}} \right) = - cotx \\
= 2\cot {30^{\text{o}}} = 2\sqrt 3 \\
$
This is the required answer. The correct option is A.
Note: Instead of using this method, we can use a more calculative method by writing $75^o$ as $(45 + 30)^o$ and applying the angle difference formula as-
$
= \tan {\left( {45 + 30} \right)^{\text{o}}} - \dfrac{1}{{\tan {{\left( {45 + 30} \right)}^{\text{o}}}}} \\
= \dfrac{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}}{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}} - \dfrac{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}}{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}} \\
Applying\;the\;values - \\
= \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - \dfrac{1}{{\sqrt 3 }}}} - \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + \dfrac{1}{{\sqrt 3 }}}} = 2\sqrt 3 \\
$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Which Country is Called "The Land of Festivals"?

What type of cell is found in the Seminiferous tub class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

