
The value of $\tan {75}^{\circ} - \cot {75}^{\circ} $ is-
A. $2\sqrt 3 $
B. $3\sqrt 2 $
C. 3
D. 1
Answer
597k+ views
Hint: We will use the formulas for various trigonometric functions which are given below-
$
\dfrac{{\sin x}}{{\cos x}} = \tan x \\
\cos 2x = {\cos ^2}x - {\sin ^2}x \\
\sin 2x = 2\sin x\cos x \\
$
Complete step-by-step solution -
To find the value of the given expression, we will first convert it in terms of sine and cosine functions and then solve further as-
$
= \dfrac{{\sin {{75}^o}}}{{\cos {{75}^o}}} - \dfrac{{\cos {{75}^o}}}{{\sin {{75}^o}}} \\
= \dfrac{{{{\sin }^2}{{75}^o} - {{\cos }^2}{{75}^o}}}{{\sin {{75}^o}\cos {{75}^o}}} \\
$
We will multiply and divide the expression by 2-
$ = \dfrac{{ - 2\left( {{{\cos }^2}{{75}^o} - \sin {{75}^o}} \right)}}{{2\sin {{75}^o}\cos {{75}^o}}}$
Applying the formula for cos2x and sin2x,
$
= \dfrac{{ - 2\cos {{150}^{\text{o}}}}}{{\sin {{150}^{\text{o}}}}} \\
= - 2\cot {150^{\text{o}}} = - 2\cot \left( {{{180}^{\text{o}}} - {{30}^{\text{o}}}} \right) \\
Using\;\cot \left( {180 - {\text{x}}} \right) = - cotx \\
= 2\cot {30^{\text{o}}} = 2\sqrt 3 \\
$
This is the required answer. The correct option is A.
Note: Instead of using this method, we can use a more calculative method by writing $75^o$ as $(45 + 30)^o$ and applying the angle difference formula as-
$
= \tan {\left( {45 + 30} \right)^{\text{o}}} - \dfrac{1}{{\tan {{\left( {45 + 30} \right)}^{\text{o}}}}} \\
= \dfrac{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}}{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}} - \dfrac{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}}{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}} \\
Applying\;the\;values - \\
= \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - \dfrac{1}{{\sqrt 3 }}}} - \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + \dfrac{1}{{\sqrt 3 }}}} = 2\sqrt 3 \\
$
$
\dfrac{{\sin x}}{{\cos x}} = \tan x \\
\cos 2x = {\cos ^2}x - {\sin ^2}x \\
\sin 2x = 2\sin x\cos x \\
$
Complete step-by-step solution -
To find the value of the given expression, we will first convert it in terms of sine and cosine functions and then solve further as-
$
= \dfrac{{\sin {{75}^o}}}{{\cos {{75}^o}}} - \dfrac{{\cos {{75}^o}}}{{\sin {{75}^o}}} \\
= \dfrac{{{{\sin }^2}{{75}^o} - {{\cos }^2}{{75}^o}}}{{\sin {{75}^o}\cos {{75}^o}}} \\
$
We will multiply and divide the expression by 2-
$ = \dfrac{{ - 2\left( {{{\cos }^2}{{75}^o} - \sin {{75}^o}} \right)}}{{2\sin {{75}^o}\cos {{75}^o}}}$
Applying the formula for cos2x and sin2x,
$
= \dfrac{{ - 2\cos {{150}^{\text{o}}}}}{{\sin {{150}^{\text{o}}}}} \\
= - 2\cot {150^{\text{o}}} = - 2\cot \left( {{{180}^{\text{o}}} - {{30}^{\text{o}}}} \right) \\
Using\;\cot \left( {180 - {\text{x}}} \right) = - cotx \\
= 2\cot {30^{\text{o}}} = 2\sqrt 3 \\
$
This is the required answer. The correct option is A.
Note: Instead of using this method, we can use a more calculative method by writing $75^o$ as $(45 + 30)^o$ and applying the angle difference formula as-
$
= \tan {\left( {45 + 30} \right)^{\text{o}}} - \dfrac{1}{{\tan {{\left( {45 + 30} \right)}^{\text{o}}}}} \\
= \dfrac{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}}{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}} - \dfrac{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}}{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}} \\
Applying\;the\;values - \\
= \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - \dfrac{1}{{\sqrt 3 }}}} - \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + \dfrac{1}{{\sqrt 3 }}}} = 2\sqrt 3 \\
$
Recently Updated Pages
Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

