
The value of $\tan {75}^{\circ} - \cot {75}^{\circ} $ is-
A. $2\sqrt 3 $
B. $3\sqrt 2 $
C. 3
D. 1
Answer
597k+ views
Hint: We will use the formulas for various trigonometric functions which are given below-
$
\dfrac{{\sin x}}{{\cos x}} = \tan x \\
\cos 2x = {\cos ^2}x - {\sin ^2}x \\
\sin 2x = 2\sin x\cos x \\
$
Complete step-by-step solution -
To find the value of the given expression, we will first convert it in terms of sine and cosine functions and then solve further as-
$
= \dfrac{{\sin {{75}^o}}}{{\cos {{75}^o}}} - \dfrac{{\cos {{75}^o}}}{{\sin {{75}^o}}} \\
= \dfrac{{{{\sin }^2}{{75}^o} - {{\cos }^2}{{75}^o}}}{{\sin {{75}^o}\cos {{75}^o}}} \\
$
We will multiply and divide the expression by 2-
$ = \dfrac{{ - 2\left( {{{\cos }^2}{{75}^o} - \sin {{75}^o}} \right)}}{{2\sin {{75}^o}\cos {{75}^o}}}$
Applying the formula for cos2x and sin2x,
$
= \dfrac{{ - 2\cos {{150}^{\text{o}}}}}{{\sin {{150}^{\text{o}}}}} \\
= - 2\cot {150^{\text{o}}} = - 2\cot \left( {{{180}^{\text{o}}} - {{30}^{\text{o}}}} \right) \\
Using\;\cot \left( {180 - {\text{x}}} \right) = - cotx \\
= 2\cot {30^{\text{o}}} = 2\sqrt 3 \\
$
This is the required answer. The correct option is A.
Note: Instead of using this method, we can use a more calculative method by writing $75^o$ as $(45 + 30)^o$ and applying the angle difference formula as-
$
= \tan {\left( {45 + 30} \right)^{\text{o}}} - \dfrac{1}{{\tan {{\left( {45 + 30} \right)}^{\text{o}}}}} \\
= \dfrac{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}}{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}} - \dfrac{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}}{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}} \\
Applying\;the\;values - \\
= \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - \dfrac{1}{{\sqrt 3 }}}} - \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + \dfrac{1}{{\sqrt 3 }}}} = 2\sqrt 3 \\
$
$
\dfrac{{\sin x}}{{\cos x}} = \tan x \\
\cos 2x = {\cos ^2}x - {\sin ^2}x \\
\sin 2x = 2\sin x\cos x \\
$
Complete step-by-step solution -
To find the value of the given expression, we will first convert it in terms of sine and cosine functions and then solve further as-
$
= \dfrac{{\sin {{75}^o}}}{{\cos {{75}^o}}} - \dfrac{{\cos {{75}^o}}}{{\sin {{75}^o}}} \\
= \dfrac{{{{\sin }^2}{{75}^o} - {{\cos }^2}{{75}^o}}}{{\sin {{75}^o}\cos {{75}^o}}} \\
$
We will multiply and divide the expression by 2-
$ = \dfrac{{ - 2\left( {{{\cos }^2}{{75}^o} - \sin {{75}^o}} \right)}}{{2\sin {{75}^o}\cos {{75}^o}}}$
Applying the formula for cos2x and sin2x,
$
= \dfrac{{ - 2\cos {{150}^{\text{o}}}}}{{\sin {{150}^{\text{o}}}}} \\
= - 2\cot {150^{\text{o}}} = - 2\cot \left( {{{180}^{\text{o}}} - {{30}^{\text{o}}}} \right) \\
Using\;\cot \left( {180 - {\text{x}}} \right) = - cotx \\
= 2\cot {30^{\text{o}}} = 2\sqrt 3 \\
$
This is the required answer. The correct option is A.
Note: Instead of using this method, we can use a more calculative method by writing $75^o$ as $(45 + 30)^o$ and applying the angle difference formula as-
$
= \tan {\left( {45 + 30} \right)^{\text{o}}} - \dfrac{1}{{\tan {{\left( {45 + 30} \right)}^{\text{o}}}}} \\
= \dfrac{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}}{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}} - \dfrac{{1 - \tan {{45}^{\text{o}}}\tan {{30}^{\text{o}}}}}{{\tan {{45}^{\text{o}}} + \tan {{30}^{\text{o}}}}} \\
Applying\;the\;values - \\
= \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - \dfrac{1}{{\sqrt 3 }}}} - \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + \dfrac{1}{{\sqrt 3 }}}} = 2\sqrt 3 \\
$
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

