
The value of $\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan {{70}^{\circ }}$
$\begin{align}
& A)1 \\
& B)0 \\
& C)\tan {{50}^{\circ }} \\
\end{align}$
D)None of these
Answer
533.1k+ views
Hint: The above question can be solved by basic definition of trigonometry and using the various identities involved it, the following identities can be used to solve this problem:
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
$\tan \theta =\cot \left( 90-\theta \right)$
So, we start by expressing $\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$ and then applying the $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$.
Complete step by step solution:
Now write the expression and use simple trigonometric results to it:
$\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan {{70}^{\circ }}$
Now we can write $\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$
The above expression can be written by using the value listed above, we get:
\[\Rightarrow \]$\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$
Now using the property of trigonometry for the expression $\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$ we use the property $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ we get:
\[\Rightarrow \]$\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}\tan {{50}^{\circ }}}$
Multiplying the denominator term to left-hand side in the above expression and substituting $\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$ we get:
\[\Rightarrow \]\[\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\]
Multiplying each term in the bracket by $\tan {{70}^{\circ }}$ we get:
\[\Rightarrow \tan {{70}^{\circ }}-\tan {{20}^{\circ }}\tan {{70}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\]
Since we know that $\tan \theta =\cot \left( 90-\theta \right)$ therefore we can write:
$\begin{align}
& \tan {{70}^{\circ }}=\tan \left( {{90}^{\circ }}-{{70}^{\circ }} \right) \\
& \Rightarrow \tan {{70}^{\circ }}=\cot {{20}^{\circ }} \\
\end{align}$
Using this the above expression can be written as:
\[\Rightarrow \tan {{70}^{\circ }}-\tan {{20}^{\circ }}\cot {{20}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\]
Now we can use the property that $\tan \theta =\dfrac{1}{\cot \theta }$ we can write the above expression as follows.
Substitute the value of $\tan \theta $ in terms of $\cot \theta $, we get:
\[\Rightarrow \tan {{70}^{\circ }}-\tan {{20}^{\circ }}\times \dfrac{1}{\tan {{20}^{\circ }}}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{70}^{\circ }}\]
The expression becomes:
\[\begin{align}
& \Rightarrow \tan {{70}^{\circ }}-\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }} \\
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }} \\
\end{align}\]
Now to find the value of $\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan {{70}^{\circ }}$
We know that \[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}\] therefore substitute its value in equation, we get:
\[\begin{align}
& \tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan {{20}^{\circ }}+2\tan {{50}^{\circ }} \\
& \therefore 0 \\
\end{align}\]
So, the correct answer is “Option (B)”.
Note: In order to solve this question we can make use of the identities or we can also put the values of various terms involved in expression from the calculator we find that the value in either of the cases is 0. It should be kept in mind that we don’t use an identity that could make the expression more complex instead a simple identity has to be used in order to have a flexible way to solve the problem.
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
$\tan \theta =\cot \left( 90-\theta \right)$
So, we start by expressing $\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$ and then applying the $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$.
Complete step by step solution:
Now write the expression and use simple trigonometric results to it:
$\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan {{70}^{\circ }}$
Now we can write $\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$
The above expression can be written by using the value listed above, we get:
\[\Rightarrow \]$\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$
Now using the property of trigonometry for the expression $\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$ we use the property $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ we get:
\[\Rightarrow \]$\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}\tan {{50}^{\circ }}}$
Multiplying the denominator term to left-hand side in the above expression and substituting $\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$ we get:
\[\Rightarrow \]\[\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\]
Multiplying each term in the bracket by $\tan {{70}^{\circ }}$ we get:
\[\Rightarrow \tan {{70}^{\circ }}-\tan {{20}^{\circ }}\tan {{70}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\]
Since we know that $\tan \theta =\cot \left( 90-\theta \right)$ therefore we can write:
$\begin{align}
& \tan {{70}^{\circ }}=\tan \left( {{90}^{\circ }}-{{70}^{\circ }} \right) \\
& \Rightarrow \tan {{70}^{\circ }}=\cot {{20}^{\circ }} \\
\end{align}$
Using this the above expression can be written as:
\[\Rightarrow \tan {{70}^{\circ }}-\tan {{20}^{\circ }}\cot {{20}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}\]
Now we can use the property that $\tan \theta =\dfrac{1}{\cot \theta }$ we can write the above expression as follows.
Substitute the value of $\tan \theta $ in terms of $\cot \theta $, we get:
\[\Rightarrow \tan {{70}^{\circ }}-\tan {{20}^{\circ }}\times \dfrac{1}{\tan {{20}^{\circ }}}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{70}^{\circ }}\]
The expression becomes:
\[\begin{align}
& \Rightarrow \tan {{70}^{\circ }}-\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }} \\
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }} \\
\end{align}\]
Now to find the value of $\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan {{70}^{\circ }}$
We know that \[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}\] therefore substitute its value in equation, we get:
\[\begin{align}
& \tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan {{20}^{\circ }}+2\tan {{50}^{\circ }} \\
& \therefore 0 \\
\end{align}\]
So, the correct answer is “Option (B)”.
Note: In order to solve this question we can make use of the identities or we can also put the values of various terms involved in expression from the calculator we find that the value in either of the cases is 0. It should be kept in mind that we don’t use an identity that could make the expression more complex instead a simple identity has to be used in order to have a flexible way to solve the problem.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

