
The value of $\tan 20{}^\circ +2\tan 50{}^\circ -\tan 70{}^\circ $ is:
a). 1
b). 0
c). $\tan 50{}^\circ $
d). none of these
Answer
577.8k+ views
Hint: To solve the above question we will first replace all the $\tan \theta $ by $\dfrac{\sin \theta }{\cos \theta }$ and then take the LCM by pairing two term separately and then by using $\sin \left( A+B \right)=\sin A\cos B+\sin B\cos A$ and $\sin \left( A-B \right)=\sin A\cos B-\sin B\cos A$ we will simplify it and at last we will use property $\sin \left( 90{}^\circ -\theta \right)=\cos \theta $, where $\theta $ is less than $90{}^\circ $, to further simplify it and get the required answer
Complete step by step answer:
Since, we do not know the value of any of them (i.e.$\tan 20{}^\circ $, $\tan 50{}^\circ $ and $\tan 70{}^\circ $) directly from the standard trigonometry table. So, we have to simplify $\tan 20{}^\circ +2\tan 50{}^\circ -\tan 70{}^\circ $ to find its value by using trigonometric properties.
So, we can write $\tan 20{}^\circ +2\tan 50{}^\circ -\tan 70{}^\circ $ as:
$=\tan 20{}^\circ +\tan 50{}^\circ +\tan 50{}^\circ -\tan 70{}^\circ $
Since, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we will replace each $\tan \theta $ by $\dfrac{\sin \theta }{\cos \theta }$, then we will get:
$=\dfrac{\sin 20{}^\circ }{\cos 20{}^\circ }+\dfrac{\sin 50{}^\circ }{\cos 50{}^\circ }+\dfrac{\sin 50{}^\circ }{\cos 50{}^\circ }-\dfrac{\sin 70{}^\circ }{\cos 70{}^\circ }$
Now, we will take LCM of the denominator, then we will get:
$=\dfrac{\sin 20{}^\circ \cos 50{}^\circ +\sin 50{}^\circ \cos 20{}^\circ }{\cos 20{}^\circ \cos 50{}^\circ }+\dfrac{\sin 50{}^\circ \cos 70{}^\circ -\sin 70{}^\circ \cos 50{}^\circ }{\cos 50{}^\circ \cos 70{}^\circ }$
Now, we know that $\sin \left( A+B \right)=\sin A\cos B+\sin B\cos A$ and similarly we also know that $\sin \left( A-B \right)=\sin A\cos B-\sin B\cos A$.
So, we can say that $\sin 20{}^\circ \cos 50{}^\circ +\sin 50{}^\circ \cos 20{}^\circ =\sin \left( 50{}^\circ +20{}^\circ \right)=\sin \left( 70{}^\circ \right)-----(1)$
Similarly, we can say that $\sin 50{}^\circ \cos 70{}^\circ -\sin 70{}^\circ \cos 50{}^\circ =\sin \left( 50{}^\circ -70{}^\circ \right)=\sin \left( -20{}^\circ \right)$.
Since, we know that $\sin \left( -\theta \right)=-\sin \theta $. So, we can write $\sin 50{}^\circ \cos 70{}^\circ -\sin 70{}^\circ \cos 50{}^\circ =\sin \left( -20{}^\circ \right)=-\sin 20{}^\circ ---(2)$
Now, after putting (1) and (2) value in $\dfrac{\sin 20{}^\circ \cos 50{}^\circ +\sin 50{}^\circ \cos 20{}^\circ }{\cos 20{}^\circ \cos 50{}^\circ }+\dfrac{\sin 50{}^\circ \cos 70{}^\circ -\sin 70{}^\circ \cos 50{}^\circ }{\cos 50{}^\circ \cos 70{}^\circ }$, we will get:
$=\dfrac{\sin 70{}^\circ }{\cos 20{}^\circ \cos 50{}^\circ }-\dfrac{\sin 20{}^\circ }{\cos 50{}^\circ \cos 70{}^\circ }------(3)$
Now, we know that $\sin \left( 90{}^\circ -\theta \right)=\cos \theta $ where $\theta $ is less than $90{}^\circ $, so we can write $\cos 20{}^\circ $ as $\sin \left( 90{}^\circ -20{}^\circ \right)$. Similarly, we can also write $\cos 70{}^\circ $ as $\sin \left( 90{}^\circ -70{}^\circ \right)$ .
Now, after putting $\sin \left( 90{}^\circ -20{}^\circ \right)$ in place of $\cos 20{}^\circ $ and $\sin \left( 90{}^\circ -70{}^\circ \right)$ in place of $\cos 70{}^\circ $in (3), we will get:
$=\dfrac{\sin 70{}^\circ }{\sin \left( 90{}^\circ -20{}^\circ \right)\cos 50{}^\circ }-\dfrac{\sin 20{}^\circ }{\cos 50{}^\circ \sin \left( 90{}^\circ -70{}^\circ \right)}$
$=\dfrac{\sin 70{}^\circ }{\sin 70{}^\circ \cos 50{}^\circ }-\dfrac{\sin 20{}^\circ }{\cos 50{}^\circ \sin 20{}^\circ }$
$=\dfrac{1}{\cos 50{}^\circ }-\dfrac{1}{\cos 50{}^\circ }$
= 0
This is our required solution.
So, the correct answer is “Option b”.
Note: We can also solve the above question alternatively by splitting $\tan 70{}^\circ $ as $\tan \left( 50{}^\circ +20{}^\circ \right)=\dfrac{\tan 50{}^\circ +\tan 20{}^\circ }{1-\tan 50{}^\circ \tan 20{}^\circ }$ so by putting $\tan 50{}^\circ +\tan 20{}^\circ =\tan 70{}^\circ \left( 1-\tan 50{}^\circ \tan 20{}^\circ \right)$ in $\tan 20{}^\circ +2\tan 50{}^\circ -\tan 70{}^\circ $.
So, we will get: $\tan 20{}^\circ +2\tan 50{}^\circ -\tan 70{}^\circ $= \[\tan 50{}^\circ +\tan 70{}^\circ \left( 1-\tan 50{}^\circ \tan 20{}^\circ \right)-\tan 70{}^\circ \]
$=\tan 50{}^\circ +\tan 70{}^\circ -\tan 70{}^\circ \tan 50{}^\circ \tan 20{}^\circ -\tan 70{}^\circ $
Now, we will use the property $\cot \theta =\tan \left( 90{}^\circ -\theta \right)$ and write $\tan 70{}^\circ =\cot 20{}^\circ $
Hence, we will get: $=\tan 50{}^\circ -\cot 20{}^\circ \tan 50{}^\circ \tan 20{}^\circ $
$\Rightarrow \tan 50{}^\circ -\tan 50{}^\circ =0$
Students are required to memorize all the trigonometric properties and use them correctly and in such a way that the form given in question gets simplified into a simpler form and the form given in the option.
Complete step by step answer:
Since, we do not know the value of any of them (i.e.$\tan 20{}^\circ $, $\tan 50{}^\circ $ and $\tan 70{}^\circ $) directly from the standard trigonometry table. So, we have to simplify $\tan 20{}^\circ +2\tan 50{}^\circ -\tan 70{}^\circ $ to find its value by using trigonometric properties.
So, we can write $\tan 20{}^\circ +2\tan 50{}^\circ -\tan 70{}^\circ $ as:
$=\tan 20{}^\circ +\tan 50{}^\circ +\tan 50{}^\circ -\tan 70{}^\circ $
Since, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , so we will replace each $\tan \theta $ by $\dfrac{\sin \theta }{\cos \theta }$, then we will get:
$=\dfrac{\sin 20{}^\circ }{\cos 20{}^\circ }+\dfrac{\sin 50{}^\circ }{\cos 50{}^\circ }+\dfrac{\sin 50{}^\circ }{\cos 50{}^\circ }-\dfrac{\sin 70{}^\circ }{\cos 70{}^\circ }$
Now, we will take LCM of the denominator, then we will get:
$=\dfrac{\sin 20{}^\circ \cos 50{}^\circ +\sin 50{}^\circ \cos 20{}^\circ }{\cos 20{}^\circ \cos 50{}^\circ }+\dfrac{\sin 50{}^\circ \cos 70{}^\circ -\sin 70{}^\circ \cos 50{}^\circ }{\cos 50{}^\circ \cos 70{}^\circ }$
Now, we know that $\sin \left( A+B \right)=\sin A\cos B+\sin B\cos A$ and similarly we also know that $\sin \left( A-B \right)=\sin A\cos B-\sin B\cos A$.
So, we can say that $\sin 20{}^\circ \cos 50{}^\circ +\sin 50{}^\circ \cos 20{}^\circ =\sin \left( 50{}^\circ +20{}^\circ \right)=\sin \left( 70{}^\circ \right)-----(1)$
Similarly, we can say that $\sin 50{}^\circ \cos 70{}^\circ -\sin 70{}^\circ \cos 50{}^\circ =\sin \left( 50{}^\circ -70{}^\circ \right)=\sin \left( -20{}^\circ \right)$.
Since, we know that $\sin \left( -\theta \right)=-\sin \theta $. So, we can write $\sin 50{}^\circ \cos 70{}^\circ -\sin 70{}^\circ \cos 50{}^\circ =\sin \left( -20{}^\circ \right)=-\sin 20{}^\circ ---(2)$
Now, after putting (1) and (2) value in $\dfrac{\sin 20{}^\circ \cos 50{}^\circ +\sin 50{}^\circ \cos 20{}^\circ }{\cos 20{}^\circ \cos 50{}^\circ }+\dfrac{\sin 50{}^\circ \cos 70{}^\circ -\sin 70{}^\circ \cos 50{}^\circ }{\cos 50{}^\circ \cos 70{}^\circ }$, we will get:
$=\dfrac{\sin 70{}^\circ }{\cos 20{}^\circ \cos 50{}^\circ }-\dfrac{\sin 20{}^\circ }{\cos 50{}^\circ \cos 70{}^\circ }------(3)$
Now, we know that $\sin \left( 90{}^\circ -\theta \right)=\cos \theta $ where $\theta $ is less than $90{}^\circ $, so we can write $\cos 20{}^\circ $ as $\sin \left( 90{}^\circ -20{}^\circ \right)$. Similarly, we can also write $\cos 70{}^\circ $ as $\sin \left( 90{}^\circ -70{}^\circ \right)$ .
Now, after putting $\sin \left( 90{}^\circ -20{}^\circ \right)$ in place of $\cos 20{}^\circ $ and $\sin \left( 90{}^\circ -70{}^\circ \right)$ in place of $\cos 70{}^\circ $in (3), we will get:
$=\dfrac{\sin 70{}^\circ }{\sin \left( 90{}^\circ -20{}^\circ \right)\cos 50{}^\circ }-\dfrac{\sin 20{}^\circ }{\cos 50{}^\circ \sin \left( 90{}^\circ -70{}^\circ \right)}$
$=\dfrac{\sin 70{}^\circ }{\sin 70{}^\circ \cos 50{}^\circ }-\dfrac{\sin 20{}^\circ }{\cos 50{}^\circ \sin 20{}^\circ }$
$=\dfrac{1}{\cos 50{}^\circ }-\dfrac{1}{\cos 50{}^\circ }$
= 0
This is our required solution.
So, the correct answer is “Option b”.
Note: We can also solve the above question alternatively by splitting $\tan 70{}^\circ $ as $\tan \left( 50{}^\circ +20{}^\circ \right)=\dfrac{\tan 50{}^\circ +\tan 20{}^\circ }{1-\tan 50{}^\circ \tan 20{}^\circ }$ so by putting $\tan 50{}^\circ +\tan 20{}^\circ =\tan 70{}^\circ \left( 1-\tan 50{}^\circ \tan 20{}^\circ \right)$ in $\tan 20{}^\circ +2\tan 50{}^\circ -\tan 70{}^\circ $.
So, we will get: $\tan 20{}^\circ +2\tan 50{}^\circ -\tan 70{}^\circ $= \[\tan 50{}^\circ +\tan 70{}^\circ \left( 1-\tan 50{}^\circ \tan 20{}^\circ \right)-\tan 70{}^\circ \]
$=\tan 50{}^\circ +\tan 70{}^\circ -\tan 70{}^\circ \tan 50{}^\circ \tan 20{}^\circ -\tan 70{}^\circ $
Now, we will use the property $\cot \theta =\tan \left( 90{}^\circ -\theta \right)$ and write $\tan 70{}^\circ =\cot 20{}^\circ $
Hence, we will get: $=\tan 50{}^\circ -\cot 20{}^\circ \tan 50{}^\circ \tan 20{}^\circ $
$\Rightarrow \tan 50{}^\circ -\tan 50{}^\circ =0$
Students are required to memorize all the trigonometric properties and use them correctly and in such a way that the form given in question gets simplified into a simpler form and the form given in the option.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

