
The value of \[{\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) + {\tan ^{ - 1}}\left( {\dfrac{2}{9}} \right) + {\tan ^{ - 1}}\left( {\dfrac{4}{{33}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{8}{{129}}} \right) + ..... + n\] terms is
A. \[{\tan ^{ - 1}}{2^n} - \dfrac{\pi }{4}\]
B. \[{\tan ^{ - 1}}{2^n}\]
C. \[{\cot ^{ - 1}}{2^n}\]
D. \[\dfrac{{{{\sin }^{ - 1}}{2^n}}}{{{{\cos }^{ - 1}}{2^n}}}\]
Answer
564.6k+ views
Hint: We write the terms of the given series by observing a pattern. Try to break each term like the value of formula \[{\tan ^{ - 1}}x - {\tan ^{ - 1}}y\]. Apply this formula to each term and cancel all the terms having the same magnitude and opposite signs in the expansion. Write the values which are known to us using a table of trigonometric terms.
* \[{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)\]
Complete step-by-step answer:
We have to calculate the sum of the series \[{\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) + {\tan ^{ - 1}}\left( {\dfrac{2}{9}} \right) + {\tan ^{ - 1}}\left( {\dfrac{4}{{33}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{8}{{129}}} \right) + ..... + n\]terms
We can write the series as
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2 - 1}}{{1 + 2 \times 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{4 - 2}}{{1 + 4 \times 2}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{8 - 4}}{{1 + 8 \times 4}}} \right) + .... + {\tan ^{ - 1}}\left( {\dfrac{{{2^n} - {2^{n - 1}}}}{{1 + {2^n}{{.2}^{n - 1}}}}} \right)\]
We try to write the second last term as well, so we are clear of what values sto cancel and what not to cancel.
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2 - 1}}{{1 + 2 \times 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{4 - 2}}{{1 + 4 \times 2}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{8 - 4}}{{1 + 8 \times 4}}} \right) + .... + {\tan ^{ - 1}}\left( {\dfrac{{{2^{n - 1}} - {2^{n - 2}}}}{{1 + {2^{n - 1}}{{.2}^{n - 2}}}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{{2^n} - {2^{n - 1}}}}{{1 + {2^n}{{.2}^{n - 1}}}}} \right)\]
We know that each term matches the identity \[{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)\]. So series becomes
\[ \Rightarrow {\tan ^{ - 1}}(2) - {\tan ^{ - 1}}(1) + {\tan ^{ - 1}}(4) - {\tan ^{ - 1}}(2) + {\tan ^{ - 1}}(8) - {\tan ^{ - 1}}(4) + .... + {\tan ^{ - 1}}({2^{n - 1}}) - {\tan ^{ - 1}}({2^{n - 2}}) + {\tan ^{ - 1}}({2^n}) - {\tan ^{ - 1}}({2^{n - 1}})\]
Cancel all possible terms
\[ \Rightarrow - {\tan ^{ - 1}}(1) + {\tan ^{ - 1}}({2^n})\]
We know that \[{\tan ^{ - 1}}(1) = \dfrac{\pi }{4}\]
\[ \Rightarrow {\tan ^{ - 1}}({2^n}) - \dfrac{\pi }{4}\]
\[\therefore \]The sum of the series is \[{\tan ^{ - 1}}({2^n}) - \dfrac{\pi }{4}\]
\[\therefore \]Option A is correct.
Note:
Many students make the mistake of not cancelling the second last term after the expansion as they don’t see the negative term similar to that term so as to cancel the term. Keep in mind when we write the value of the second last term in the expansion, we get the negative term there and so we can cancel it. Students are advised to use the table of trigonometric terms if they don’t remember the values directly.
The table that tells us some basic values of trigonometric functions at common angles is given as
* \[{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)\]
Complete step-by-step answer:
We have to calculate the sum of the series \[{\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) + {\tan ^{ - 1}}\left( {\dfrac{2}{9}} \right) + {\tan ^{ - 1}}\left( {\dfrac{4}{{33}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{8}{{129}}} \right) + ..... + n\]terms
We can write the series as
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2 - 1}}{{1 + 2 \times 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{4 - 2}}{{1 + 4 \times 2}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{8 - 4}}{{1 + 8 \times 4}}} \right) + .... + {\tan ^{ - 1}}\left( {\dfrac{{{2^n} - {2^{n - 1}}}}{{1 + {2^n}{{.2}^{n - 1}}}}} \right)\]
We try to write the second last term as well, so we are clear of what values sto cancel and what not to cancel.
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2 - 1}}{{1 + 2 \times 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{4 - 2}}{{1 + 4 \times 2}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{8 - 4}}{{1 + 8 \times 4}}} \right) + .... + {\tan ^{ - 1}}\left( {\dfrac{{{2^{n - 1}} - {2^{n - 2}}}}{{1 + {2^{n - 1}}{{.2}^{n - 2}}}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{{2^n} - {2^{n - 1}}}}{{1 + {2^n}{{.2}^{n - 1}}}}} \right)\]
We know that each term matches the identity \[{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)\]. So series becomes
\[ \Rightarrow {\tan ^{ - 1}}(2) - {\tan ^{ - 1}}(1) + {\tan ^{ - 1}}(4) - {\tan ^{ - 1}}(2) + {\tan ^{ - 1}}(8) - {\tan ^{ - 1}}(4) + .... + {\tan ^{ - 1}}({2^{n - 1}}) - {\tan ^{ - 1}}({2^{n - 2}}) + {\tan ^{ - 1}}({2^n}) - {\tan ^{ - 1}}({2^{n - 1}})\]
Cancel all possible terms
\[ \Rightarrow - {\tan ^{ - 1}}(1) + {\tan ^{ - 1}}({2^n})\]
We know that \[{\tan ^{ - 1}}(1) = \dfrac{\pi }{4}\]
\[ \Rightarrow {\tan ^{ - 1}}({2^n}) - \dfrac{\pi }{4}\]
\[\therefore \]The sum of the series is \[{\tan ^{ - 1}}({2^n}) - \dfrac{\pi }{4}\]
\[\therefore \]Option A is correct.
Note:
Many students make the mistake of not cancelling the second last term after the expansion as they don’t see the negative term similar to that term so as to cancel the term. Keep in mind when we write the value of the second last term in the expansion, we get the negative term there and so we can cancel it. Students are advised to use the table of trigonometric terms if they don’t remember the values directly.
The table that tells us some basic values of trigonometric functions at common angles is given as
| Angles (in degrees) | ${0^ \circ }$ | ${30^ \circ }$ | ${45^ \circ }$ | ${60^ \circ }$ | ${90^ \circ }$ |
| sin | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | $1$ |
| cos | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| tan | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Not defined |
| cosec | Not defined | 2 | \[\sqrt 2 \] | \[\dfrac{2}{{\sqrt 3 }}\] | 1 |
| sec | 1 | \[\dfrac{2}{{\sqrt 3 }}\] | \[\sqrt 2 \] | 2 | Not defined |
| cot | Not defined | $\sqrt 3 $ | 1 | \[\dfrac{1}{{\sqrt 3 }}\] | 0 |
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

