
The value of \[{\tan ^{ - 1}}\dfrac{1}{3} + {\tan ^{ - 1}}\dfrac{1}{7} + {\tan ^{ - 1}}\dfrac{1}{{13}} + - - - + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + - - - \infty \] Is equal to ______
Answer
567.9k+ views
Hint: We can observe that in the given problem they are given the \[{n^{th}}\] term \[\dfrac{1}{{{n^2} + n + 1}}\] . By substituting the values of n=1, 2, 3… we get \[\dfrac{1}{3}\] , \[\dfrac{1}{7}\] \[\dfrac{1}{{13}}\] ----. In the \[{n^{th}}\] term the denominator as 1, adding and subtracting n and simplifying in the denominator we get \[{\tan ^{ - 1}}(n + 1) - {\tan ^{ - 1}}(n)\] . Using summation and formula we get the required solution.
Complete step-by-step answer:
Given, \[{\tan ^{ - 1}}\dfrac{1}{3} + {\tan ^{ - 1}}\dfrac{1}{7} + {\tan ^{ - 1}}\dfrac{1}{{13}} + - - - + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + - - - \infty \] .
Take \[{n^{th}}\] term as \[{\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right)\] .
Adding and subtracting n on the numerator.
\[ = {\tan ^{ - 1}}\left( {\dfrac{{n + 1 - n}}{{{n^2} + n + 1}}} \right)\]
But the denominator term we can rearrange it as \[{n^2} + n + 1 = 1 + n + {n^2}\]
\[ = 1 + n(1 + n)\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{n + 1 - n}}{{1 + n(1 + n)}}} \right)\] ----- (1)
We know the formula \[{\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A - B}}{{1 + AB}}} \right)\] , comparing this with equation (1).
\[A = n + 1\] and \[B = n\]
\[\therefore \] Equation (1) becomes \[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) = {\tan ^{ - 1}}(n + 1) - {\tan ^{ - 1}}(n)\] . ----- (2)
Now \[{S_\infty } = {\tan ^{ - 1}}\dfrac{1}{3} + {\tan ^{ - 1}}\dfrac{1}{7} + {\tan ^{ - 1}}\dfrac{1}{{13}} + - - - + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + - - - \infty \]
It can be written in a summation form,
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right)} \]
If you put n values from n=1 to \[\infty \] . You will get the given problem.
Using equation (2) and substituting we get,
\[ = \sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}(n + 1) - {{\tan }^{ - 1}}(n)] } \]
Put n=1 to \[\infty \] we get,
\[ = \left( {{{\tan }^{ - 1}}(2) - {{\tan }^{ - 1}}(1)} \right) + \left( {{{\tan }^{ - 1}}(3) - {{\tan }^{ - 1}}(2)} \right) + \left( {{{\tan }^{ - 1}}(4) - {{\tan }^{ - 1}}(3)} \right) + - - - + \left( {{{\tan }^{ - 1}}(\infty ) - {{\tan }^{ - 1}}(\infty - 1)} \right) + \left( {{{\tan }^{ - 1}}(\infty + 1) - {{\tan }^{ - 1}}(\infty )} \right).\]
As we can see, \[{\tan ^{ - 1}}(2)\] will get canceled from first and second terms. \[{\tan ^{ - 1}}(3)\] will get cancels from the second term and third term. Similarly all the terms will get canceled. But in the last term \[{\tan ^{ - 1}}(\infty + 1)\] will remain as it is.
\[ = - {\tan ^{ - 1}}(1) + - - - - - - + {\tan ^{ - 1}}(\infty + 1)\]
We know that \[{\tan ^{ - 1}}(1) = \dfrac{\pi }{4}\] and if we add some number to infinity we again get infinity \[{\tan ^{ - 1}}(\infty + 1) = {\tan ^{ - 1}}(\infty )\] . We know \[{\tan ^{ - 1}}(\infty ) = \dfrac{\pi }{2}\] substituting this we get,
\[ = - {\tan ^{ - 1}}(1) + - - - - - - + {\tan ^{ - 1}}(\infty )\]
\[ = - \dfrac{\pi }{4} + \dfrac{\pi }{2}\] (Taking L.C.M. and simplifying)
\[ = \dfrac{\pi }{4}\]
Hence, \[{\tan ^{ - 1}}\dfrac{1}{3} + {\tan ^{ - 1}}\dfrac{1}{7} + {\tan ^{ - 1}}\dfrac{1}{{13}} + - - - + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + - - - \infty = \dfrac{\pi }{4}\] .
So, the correct answer is “$\dfrac{\pi }{4}$ .”.
Note: You can also solve this by changing the each numerator term of each term in the equation as we did in the nth term. It will be difficult to solve. So, we applied for the nth term and using summation we solved it. Careful with the cancellation after the removal of summation. Better write the last to terms I.e., \[n = \infty - 1\] and \[n = \infty \] (so that no terms will get missed).
Complete step-by-step answer:
Given, \[{\tan ^{ - 1}}\dfrac{1}{3} + {\tan ^{ - 1}}\dfrac{1}{7} + {\tan ^{ - 1}}\dfrac{1}{{13}} + - - - + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + - - - \infty \] .
Take \[{n^{th}}\] term as \[{\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right)\] .
Adding and subtracting n on the numerator.
\[ = {\tan ^{ - 1}}\left( {\dfrac{{n + 1 - n}}{{{n^2} + n + 1}}} \right)\]
But the denominator term we can rearrange it as \[{n^2} + n + 1 = 1 + n + {n^2}\]
\[ = 1 + n(1 + n)\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{n + 1 - n}}{{1 + n(1 + n)}}} \right)\] ----- (1)
We know the formula \[{\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A - B}}{{1 + AB}}} \right)\] , comparing this with equation (1).
\[A = n + 1\] and \[B = n\]
\[\therefore \] Equation (1) becomes \[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) = {\tan ^{ - 1}}(n + 1) - {\tan ^{ - 1}}(n)\] . ----- (2)
Now \[{S_\infty } = {\tan ^{ - 1}}\dfrac{1}{3} + {\tan ^{ - 1}}\dfrac{1}{7} + {\tan ^{ - 1}}\dfrac{1}{{13}} + - - - + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + - - - \infty \]
It can be written in a summation form,
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right)} \]
If you put n values from n=1 to \[\infty \] . You will get the given problem.
Using equation (2) and substituting we get,
\[ = \sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}(n + 1) - {{\tan }^{ - 1}}(n)] } \]
Put n=1 to \[\infty \] we get,
\[ = \left( {{{\tan }^{ - 1}}(2) - {{\tan }^{ - 1}}(1)} \right) + \left( {{{\tan }^{ - 1}}(3) - {{\tan }^{ - 1}}(2)} \right) + \left( {{{\tan }^{ - 1}}(4) - {{\tan }^{ - 1}}(3)} \right) + - - - + \left( {{{\tan }^{ - 1}}(\infty ) - {{\tan }^{ - 1}}(\infty - 1)} \right) + \left( {{{\tan }^{ - 1}}(\infty + 1) - {{\tan }^{ - 1}}(\infty )} \right).\]
As we can see, \[{\tan ^{ - 1}}(2)\] will get canceled from first and second terms. \[{\tan ^{ - 1}}(3)\] will get cancels from the second term and third term. Similarly all the terms will get canceled. But in the last term \[{\tan ^{ - 1}}(\infty + 1)\] will remain as it is.
\[ = - {\tan ^{ - 1}}(1) + - - - - - - + {\tan ^{ - 1}}(\infty + 1)\]
We know that \[{\tan ^{ - 1}}(1) = \dfrac{\pi }{4}\] and if we add some number to infinity we again get infinity \[{\tan ^{ - 1}}(\infty + 1) = {\tan ^{ - 1}}(\infty )\] . We know \[{\tan ^{ - 1}}(\infty ) = \dfrac{\pi }{2}\] substituting this we get,
\[ = - {\tan ^{ - 1}}(1) + - - - - - - + {\tan ^{ - 1}}(\infty )\]
\[ = - \dfrac{\pi }{4} + \dfrac{\pi }{2}\] (Taking L.C.M. and simplifying)
\[ = \dfrac{\pi }{4}\]
Hence, \[{\tan ^{ - 1}}\dfrac{1}{3} + {\tan ^{ - 1}}\dfrac{1}{7} + {\tan ^{ - 1}}\dfrac{1}{{13}} + - - - + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + - - - \infty = \dfrac{\pi }{4}\] .
So, the correct answer is “$\dfrac{\pi }{4}$ .”.
Note: You can also solve this by changing the each numerator term of each term in the equation as we did in the nth term. It will be difficult to solve. So, we applied for the nth term and using summation we solved it. Careful with the cancellation after the removal of summation. Better write the last to terms I.e., \[n = \infty - 1\] and \[n = \infty \] (so that no terms will get missed).
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

