
The value of $\sum\limits_{n = 1}^m {\log \dfrac{{{a^{2n - 1}}}}{{{b^{m - 1}}}}} $($a$≠$0$, $b$≠$0$,$1$) is equal to
A. $m\log \dfrac{{{a^{2m}}}}{{{b^{m - 1}}}}$
B. $\log \dfrac{{{a^{2m}}}}{{{b^{m - 1}}}}$
C. $\dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{2m - 2}}}}$
D. $\dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{m + 1}}}}$
Answer
552.6k+ views
Hint: Here the summation is taking over $n = 1$ to $m$. So there are $m$ terms. To get the solution students need to use the rules and properties of logarithms to get a required solution. The value of $a$ is not equal to $0$ and $b \ne 0$. If $b = 0$ then the denominator becomes zero and we cannot proceed any more also $b \ne 1$ is given.
Formula used: Power of power rule: ${\left( {{x^m}} \right)^n} = {a^{mn}}$
Logarithm power rule law: $\log \left( {{M^n}} \right) = n\log \left( M \right)$
Complete step-by-step solution:
Let $I$=$\sum\limits_{n = 1}^m {\log \dfrac{{{a^{2n - 1}}}}{{{b^{m - 1}}}}} $
Expand the summation from $n$=$1$ to $m$
$I$=$\log \dfrac{a}{{{b^{m - 1}}}}$+$\log \dfrac{{{a^3}}}{{{b^{m - 1}}}}$+$\log \dfrac{{{a^5}}}{{{b^{m - 1}}}}$+…+\[\log \dfrac{{{a^{2m - 1}}}}{{{b^{m - 1}}}}\]$ - - - - - \left( 1 \right)$
If the terms are the same then we can add the powers. The powers of $a$ in the numerators are $1,3,5,...,2m - 1$ and in the denominator there are $m$ terms. Now adding the powers of numerator and denominator in equation $\left( 1 \right)$ becomes
$I$= \[\log \dfrac{{{a^{\left( {1 + 3 + 5 + ... + 2m - 1} \right)}}}}{{{b^{{{\left( {m - 1} \right)}^m}}}}}\]
Now, $1$+$3$+$5$+…+$2m$−$1$=${m^2}$
For, ${S_m}$=$\dfrac{m}{2}$$\left( {a + l} \right)$
Where $a$ is the first term and $l$ is the last term.
${S_m} = \dfrac{m}{2}\left( {1 + 2m - 1} \right)$
Simplifying we get,
$ \Rightarrow {S_m} = \dfrac{m}{2}\left( {2m} \right)$
Cancelling the similar terms in numerator and denominator,
$ \Rightarrow {S_m} = {m^2}$
Hence,
$\therefore $ $1 + 3 + 5 + ... + 2m - 1 = {m^2}$
We get, $I$= $\log \dfrac{{{a^{{m^2}}}}}{{{b^{\left( {m - 1} \right)}}^m}}$
$ \Rightarrow I$=$\log \dfrac{{{a^{2m}}}}{{{b^{{{\left( {m - 1} \right)}^m}}}}} - - - - - \left( 2 \right)$
In equation $\left( 2 \right)$, we used the power of power rule in the numerator.
Power of power rule:
For any number $x$ and all integers $m$ and $n$; ${\left( {{x^m}} \right)^n} = {a^{mn}}$
From equation $\left( 2 \right)$, $I = \log \left( {\dfrac{{{{\left( {{a^{2m}}} \right)}^{\dfrac{m}{2}}}}}{{{{\left( {{b^{\left( {m - 1} \right)2}}} \right)}^{\dfrac{m}{2}}}}}} \right) - - - - - \left( 3 \right)$
In equation $\left( 3 \right)$, just multiply and divide by $2$ in the powers of numerator and denominator.
Now, $I = \log {\left( {\dfrac{{{a^{2m}}}}{{\left( {{b^{2m - 2}}} \right)}}} \right)^{\dfrac{m}{2}}} - - - - - \left( 4 \right)$
$ \Rightarrow $$I = \dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{2m - 2}}}} - - - - - \left( 5 \right)$
In equation $\left( 5 \right)$ we used power rule of logarithm that is, $\log \left( {{M^n}} \right) = n\log \left( M \right)$
$\therefore $ $I = \dfrac{m}{2}\log \left( {\dfrac{{{a^{2m}}}}{{\left( {{b^{2m - 2}}} \right)}}} \right)$
$\therefore {\text{ }}\sum\limits_{n = 1}^m {\log \dfrac{{{a^{{2^{n - 1}}}}}}{{{b^{m - 1}}}}} {\text{ = }}\dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{2m - 2}}}}$
The answer is option $\left( C \right)$
Note: The laws which we used in the problems are power of power rule, law of power in logarithm. Also there are some more logarithm laws: product rule law, quotient rule law, power rule law and change of base rule law. Also the important formula we used in the problem is $1 + 3 + 5 + ..... + 2m - 1 = {m^2}$.
Formula used: Power of power rule: ${\left( {{x^m}} \right)^n} = {a^{mn}}$
Logarithm power rule law: $\log \left( {{M^n}} \right) = n\log \left( M \right)$
Complete step-by-step solution:
Let $I$=$\sum\limits_{n = 1}^m {\log \dfrac{{{a^{2n - 1}}}}{{{b^{m - 1}}}}} $
Expand the summation from $n$=$1$ to $m$
$I$=$\log \dfrac{a}{{{b^{m - 1}}}}$+$\log \dfrac{{{a^3}}}{{{b^{m - 1}}}}$+$\log \dfrac{{{a^5}}}{{{b^{m - 1}}}}$+…+\[\log \dfrac{{{a^{2m - 1}}}}{{{b^{m - 1}}}}\]$ - - - - - \left( 1 \right)$
If the terms are the same then we can add the powers. The powers of $a$ in the numerators are $1,3,5,...,2m - 1$ and in the denominator there are $m$ terms. Now adding the powers of numerator and denominator in equation $\left( 1 \right)$ becomes
$I$= \[\log \dfrac{{{a^{\left( {1 + 3 + 5 + ... + 2m - 1} \right)}}}}{{{b^{{{\left( {m - 1} \right)}^m}}}}}\]
Now, $1$+$3$+$5$+…+$2m$−$1$=${m^2}$
For, ${S_m}$=$\dfrac{m}{2}$$\left( {a + l} \right)$
Where $a$ is the first term and $l$ is the last term.
${S_m} = \dfrac{m}{2}\left( {1 + 2m - 1} \right)$
Simplifying we get,
$ \Rightarrow {S_m} = \dfrac{m}{2}\left( {2m} \right)$
Cancelling the similar terms in numerator and denominator,
$ \Rightarrow {S_m} = {m^2}$
Hence,
$\therefore $ $1 + 3 + 5 + ... + 2m - 1 = {m^2}$
We get, $I$= $\log \dfrac{{{a^{{m^2}}}}}{{{b^{\left( {m - 1} \right)}}^m}}$
$ \Rightarrow I$=$\log \dfrac{{{a^{2m}}}}{{{b^{{{\left( {m - 1} \right)}^m}}}}} - - - - - \left( 2 \right)$
In equation $\left( 2 \right)$, we used the power of power rule in the numerator.
Power of power rule:
For any number $x$ and all integers $m$ and $n$; ${\left( {{x^m}} \right)^n} = {a^{mn}}$
From equation $\left( 2 \right)$, $I = \log \left( {\dfrac{{{{\left( {{a^{2m}}} \right)}^{\dfrac{m}{2}}}}}{{{{\left( {{b^{\left( {m - 1} \right)2}}} \right)}^{\dfrac{m}{2}}}}}} \right) - - - - - \left( 3 \right)$
In equation $\left( 3 \right)$, just multiply and divide by $2$ in the powers of numerator and denominator.
Now, $I = \log {\left( {\dfrac{{{a^{2m}}}}{{\left( {{b^{2m - 2}}} \right)}}} \right)^{\dfrac{m}{2}}} - - - - - \left( 4 \right)$
$ \Rightarrow $$I = \dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{2m - 2}}}} - - - - - \left( 5 \right)$
In equation $\left( 5 \right)$ we used power rule of logarithm that is, $\log \left( {{M^n}} \right) = n\log \left( M \right)$
$\therefore $ $I = \dfrac{m}{2}\log \left( {\dfrac{{{a^{2m}}}}{{\left( {{b^{2m - 2}}} \right)}}} \right)$
$\therefore {\text{ }}\sum\limits_{n = 1}^m {\log \dfrac{{{a^{{2^{n - 1}}}}}}{{{b^{m - 1}}}}} {\text{ = }}\dfrac{m}{2}\log \dfrac{{{a^{2m}}}}{{{b^{2m - 2}}}}$
The answer is option $\left( C \right)$
Note: The laws which we used in the problems are power of power rule, law of power in logarithm. Also there are some more logarithm laws: product rule law, quotient rule law, power rule law and change of base rule law. Also the important formula we used in the problem is $1 + 3 + 5 + ..... + 2m - 1 = {m^2}$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

