
The value of $\sqrt{3}\csc {{20}^{0}}-\sec {{20}^{0}}$ is.
(a) 4.5
(b) 4
(c) 8
(d) 9
Answer
595.8k+ views
Hint: For solving this question we will use some trigonometric formulas like \[\cos \left( A+B \right)=\cos A\cdot \cos B-\sin A\cdot \sin B\] , \[\sin 2\theta =2\sin \theta \cos \theta \] , \[\cos \theta =\sin \left( 90-\theta \right)\] and some common trigonometric ratios like \[\cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}\] and \[\sin {{30}^{0}}=\dfrac{1}{2}\] . After that, we will simplify the given term then put the proper values and solve for the correct answer.
Complete step-by-step answer:
Given:
We have to find the value of $\sqrt{3}\csc {{20}^{0}}-\sec {{20}^{0}}$ .
Now, here either we put directly the value of $\csc {{20}^{0}}$ , $\sec {{20}^{0}}$ and find the value of the given term. Rather than putting value, we will first simplify the given term. We will use the following formulae in solving this question:
\[\begin{align}
& \csc \theta =\dfrac{1}{\sin \theta }.............................................................\left( 1 \right) \\
& \sec \theta =\dfrac{1}{\cos \theta }.............................................................\left( 2 \right) \\
& \cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}.............................................................\left( 3 \right) \\
& \sin {{30}^{0}}=\dfrac{1}{2}.................................................................\left( 4 \right) \\
& \cos \left( A+B \right)=\cos A\cdot \cos B-\sin A\cdot \sin B......................\left( 5 \right) \\
& \sin 2\theta =2\sin \theta \cos \theta ....................................................\left( 6 \right) \\
& \cos \theta =\sin \left( 90-\theta \right)......................................................\left( 7 \right) \\
\end{align}\]
Now, simplifying the given term. Then,
$\sqrt{3}\csc {{20}^{0}}-\sec {{20}^{0}}$
Now, use equation (1) and equation (2) in the above term. Then,
$\begin{align}
& \sqrt{3}\csc {{20}^{0}}-\sec {{20}^{0}} \\
& \Rightarrow \dfrac{\sqrt{3}}{\sin {{20}^{0}}}-\dfrac{1}{\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{\sqrt{3}\cos {{20}^{0}}-\sin {{20}^{0}}}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{2\left( \dfrac{\sqrt{3}}{2}\cos {{20}^{0}}-\dfrac{1}{2}\sin {{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
\end{align}$
Now, substituting \[\dfrac{\sqrt{3}}{2}=\cos {{30}^{0}}\] from equation (3) and \[\dfrac{1}{2}=\sin {{30}^{0}}\] from equation (4) in the above term. Then,
$\begin{align}
& \dfrac{2\left( \dfrac{\sqrt{3}}{2}\cos {{20}^{0}}-\dfrac{1}{2}\sin {{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{2\left( \cos {{30}^{0}}\cos {{20}^{0}}-\sin {{30}^{0}}\sin {{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
\end{align}$
Now, using the formula from the equation (5) with the value of $A={{30}^{0}}$ and $B={{20}^{0}}$ . Then,
$\begin{align}
& \dfrac{2\left( \cos {{30}^{0}}\cos {{20}^{0}}-\sin {{30}^{0}}\sin {{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{2\cos \left( {{30}^{0}}+{{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{4\cos {{50}^{0}}}{2\sin {{20}^{0}}\cos {{20}^{0}}} \\
\end{align}$
Now, using the formula from the equation (6) with the value of $\theta ={{20}^{0}}$ . Then,
$\begin{align}
& \dfrac{4\cos {{50}^{0}}}{2\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{4\cos {{50}^{0}}}{\sin {{40}^{0}}} \\
\end{align}$
Now, substituting $\sin {{40}^{0}}=\cos {{50}^{0}}$ in the above term by using the formula from equation (7) with the value of $\theta ={{50}^{0}}$ . Then,
$\begin{align}
& \dfrac{4\cos {{50}^{0}}}{\sin {{40}^{0}}} \\
& \Rightarrow \dfrac{4\cos {{50}^{0}}}{\sin \left( {{90}^{0}}-{{50}^{0}} \right)} \\
\end{align}$
$\begin{align}
& \Rightarrow \dfrac{4\cos {{50}^{0}}}{\cos {{50}^{0}}} \\
& \Rightarrow 4 \\
\end{align}$
Thus, from the above calculation in which we have simplified the given term with the help of some trigonometric formula, we can say that the value of $\sqrt{3}\csc {{20}^{0}}-\sec {{20}^{0}}$ will be equal to 4.
Hence, (b) is the correct option.
Note:While using the formulae, one must make sure that the relations are properly used and there are no sign mistakes. Students get confused and write \[\cos \left( A+B \right)=\cos A\cdot \cos B-\sin A\cdot \sin B\] as \[\cos \left( A+B \right)=\cos A\cdot \cos B+\sin A\cdot \sin B\] , which is wrong. Such mistakes can lead to wrong answers and hence, should be avoided.
Complete step-by-step answer:
Given:
We have to find the value of $\sqrt{3}\csc {{20}^{0}}-\sec {{20}^{0}}$ .
Now, here either we put directly the value of $\csc {{20}^{0}}$ , $\sec {{20}^{0}}$ and find the value of the given term. Rather than putting value, we will first simplify the given term. We will use the following formulae in solving this question:
\[\begin{align}
& \csc \theta =\dfrac{1}{\sin \theta }.............................................................\left( 1 \right) \\
& \sec \theta =\dfrac{1}{\cos \theta }.............................................................\left( 2 \right) \\
& \cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}.............................................................\left( 3 \right) \\
& \sin {{30}^{0}}=\dfrac{1}{2}.................................................................\left( 4 \right) \\
& \cos \left( A+B \right)=\cos A\cdot \cos B-\sin A\cdot \sin B......................\left( 5 \right) \\
& \sin 2\theta =2\sin \theta \cos \theta ....................................................\left( 6 \right) \\
& \cos \theta =\sin \left( 90-\theta \right)......................................................\left( 7 \right) \\
\end{align}\]
Now, simplifying the given term. Then,
$\sqrt{3}\csc {{20}^{0}}-\sec {{20}^{0}}$
Now, use equation (1) and equation (2) in the above term. Then,
$\begin{align}
& \sqrt{3}\csc {{20}^{0}}-\sec {{20}^{0}} \\
& \Rightarrow \dfrac{\sqrt{3}}{\sin {{20}^{0}}}-\dfrac{1}{\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{\sqrt{3}\cos {{20}^{0}}-\sin {{20}^{0}}}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{2\left( \dfrac{\sqrt{3}}{2}\cos {{20}^{0}}-\dfrac{1}{2}\sin {{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
\end{align}$
Now, substituting \[\dfrac{\sqrt{3}}{2}=\cos {{30}^{0}}\] from equation (3) and \[\dfrac{1}{2}=\sin {{30}^{0}}\] from equation (4) in the above term. Then,
$\begin{align}
& \dfrac{2\left( \dfrac{\sqrt{3}}{2}\cos {{20}^{0}}-\dfrac{1}{2}\sin {{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{2\left( \cos {{30}^{0}}\cos {{20}^{0}}-\sin {{30}^{0}}\sin {{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
\end{align}$
Now, using the formula from the equation (5) with the value of $A={{30}^{0}}$ and $B={{20}^{0}}$ . Then,
$\begin{align}
& \dfrac{2\left( \cos {{30}^{0}}\cos {{20}^{0}}-\sin {{30}^{0}}\sin {{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{2\cos \left( {{30}^{0}}+{{20}^{0}} \right)}{\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{4\cos {{50}^{0}}}{2\sin {{20}^{0}}\cos {{20}^{0}}} \\
\end{align}$
Now, using the formula from the equation (6) with the value of $\theta ={{20}^{0}}$ . Then,
$\begin{align}
& \dfrac{4\cos {{50}^{0}}}{2\sin {{20}^{0}}\cos {{20}^{0}}} \\
& \Rightarrow \dfrac{4\cos {{50}^{0}}}{\sin {{40}^{0}}} \\
\end{align}$
Now, substituting $\sin {{40}^{0}}=\cos {{50}^{0}}$ in the above term by using the formula from equation (7) with the value of $\theta ={{50}^{0}}$ . Then,
$\begin{align}
& \dfrac{4\cos {{50}^{0}}}{\sin {{40}^{0}}} \\
& \Rightarrow \dfrac{4\cos {{50}^{0}}}{\sin \left( {{90}^{0}}-{{50}^{0}} \right)} \\
\end{align}$
$\begin{align}
& \Rightarrow \dfrac{4\cos {{50}^{0}}}{\cos {{50}^{0}}} \\
& \Rightarrow 4 \\
\end{align}$
Thus, from the above calculation in which we have simplified the given term with the help of some trigonometric formula, we can say that the value of $\sqrt{3}\csc {{20}^{0}}-\sec {{20}^{0}}$ will be equal to 4.
Hence, (b) is the correct option.
Note:While using the formulae, one must make sure that the relations are properly used and there are no sign mistakes. Students get confused and write \[\cos \left( A+B \right)=\cos A\cdot \cos B-\sin A\cdot \sin B\] as \[\cos \left( A+B \right)=\cos A\cdot \cos B+\sin A\cdot \sin B\] , which is wrong. Such mistakes can lead to wrong answers and hence, should be avoided.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

