
The value of $\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}$
(a)14
(b)15
(c)16
(d)17
Answer
585.3k+ views
Hint: To solve the question given above, we will assume some value of all the 5 under roots. First we will calculate the value of innermost under root. Then we will calculate the second innermost under root, then the third innermost under root and so on.
Complete step-by-step answer:
To start with, we will assume that the value of $\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}$ is ‘a’, the value of $\sqrt{130+\sqrt{88-\sqrt{44+\sqrt{25}}}}$ is ‘b’, the value of $\sqrt{88-\sqrt{44+\sqrt{25}}}$ is ‘c’, the value of $\sqrt{44+\sqrt{25}}$ is ‘d’ and the value of $\sqrt{25}$ is ‘e’. Thus we will get:
$a=\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}..........\left( 1 \right)$
$b=\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}.......\left( 2 \right)$
$c=\sqrt{88-\sqrt{44+\sqrt{25}}}.........\left( 3 \right)$
$d=\sqrt{44+\sqrt{25}}.........\left( 4 \right)$
$e=\sqrt{25}........\left( 5 \right)$
Now, first we will calculate the value of ‘e’. We know that $\sqrt{25}=5$. Thus, we will get:
$e=5.......\left( 6 \right)$
Now, we know that, from (4) and (5) we have:
$d=\sqrt{44+e}.......\left( 7 \right)$
$\Rightarrow d=\sqrt{44+5}$
$\Rightarrow d=\sqrt{49}$
We know that $\sqrt{49}=7$. So, we will get:
$\Rightarrow d=7$
$\Rightarrow \sqrt{44+\sqrt{25}}=7.......\left( 8 \right)$
From (3) and (8), we will get the following equation:
$\Rightarrow c=\sqrt{88-7}$
$\Rightarrow c=\sqrt{81}$
We know that $\sqrt{81}=9$. Thus, we will get:
$\Rightarrow c=9$
$\Rightarrow \sqrt{88-\sqrt{44+\sqrt{25}}}=9.......\left( 9 \right)$
From (9) and (2), we will get the following equation:
$\Rightarrow b=\sqrt{130-9}$
$\Rightarrow b=\sqrt{121}$
Now, we know that $\sqrt{121}=11$. So we will get:
$\Rightarrow b=11$
$\Rightarrow \sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}=11.........\left( 10 \right)$
From (10) and (1), we will get the following equation:
$\Rightarrow a=\sqrt{214+11}$
$\Rightarrow a=\sqrt{225}$
Now, we know that $\sqrt{225}=15$. Thus, we will get the following equation:
$\Rightarrow a=15$
$\Rightarrow \sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}=15$
Hence, the correct option is (b).
Note: If we do not know the values of square roots of the number given in question, we can calculate it by the method of prime factorisation. For example: The value of $\sqrt{215}$ is calculated by:
$\Rightarrow 215=3\times 3\times 5\times 5$
$\Rightarrow 215=\left( 3\times 3 \right)\times \left( 5\times 5 \right)$
$\Rightarrow \sqrt{215}=3\times 5$
$\Rightarrow \sqrt{215}=15$
Similarly the values of other square roots can be calculated but the condition to apply this method is that the number inside the square root should be the square of a positive integer.
Complete step-by-step answer:
To start with, we will assume that the value of $\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}$ is ‘a’, the value of $\sqrt{130+\sqrt{88-\sqrt{44+\sqrt{25}}}}$ is ‘b’, the value of $\sqrt{88-\sqrt{44+\sqrt{25}}}$ is ‘c’, the value of $\sqrt{44+\sqrt{25}}$ is ‘d’ and the value of $\sqrt{25}$ is ‘e’. Thus we will get:
$a=\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}..........\left( 1 \right)$
$b=\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}.......\left( 2 \right)$
$c=\sqrt{88-\sqrt{44+\sqrt{25}}}.........\left( 3 \right)$
$d=\sqrt{44+\sqrt{25}}.........\left( 4 \right)$
$e=\sqrt{25}........\left( 5 \right)$
Now, first we will calculate the value of ‘e’. We know that $\sqrt{25}=5$. Thus, we will get:
$e=5.......\left( 6 \right)$
Now, we know that, from (4) and (5) we have:
$d=\sqrt{44+e}.......\left( 7 \right)$
$\Rightarrow d=\sqrt{44+5}$
$\Rightarrow d=\sqrt{49}$
We know that $\sqrt{49}=7$. So, we will get:
$\Rightarrow d=7$
$\Rightarrow \sqrt{44+\sqrt{25}}=7.......\left( 8 \right)$
From (3) and (8), we will get the following equation:
$\Rightarrow c=\sqrt{88-7}$
$\Rightarrow c=\sqrt{81}$
We know that $\sqrt{81}=9$. Thus, we will get:
$\Rightarrow c=9$
$\Rightarrow \sqrt{88-\sqrt{44+\sqrt{25}}}=9.......\left( 9 \right)$
From (9) and (2), we will get the following equation:
$\Rightarrow b=\sqrt{130-9}$
$\Rightarrow b=\sqrt{121}$
Now, we know that $\sqrt{121}=11$. So we will get:
$\Rightarrow b=11$
$\Rightarrow \sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}=11.........\left( 10 \right)$
From (10) and (1), we will get the following equation:
$\Rightarrow a=\sqrt{214+11}$
$\Rightarrow a=\sqrt{225}$
Now, we know that $\sqrt{225}=15$. Thus, we will get the following equation:
$\Rightarrow a=15$
$\Rightarrow \sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}=15$
Hence, the correct option is (b).
Note: If we do not know the values of square roots of the number given in question, we can calculate it by the method of prime factorisation. For example: The value of $\sqrt{215}$ is calculated by:
| 3 | 215 |
| 3 | 75 |
| 5 | 25 |
| 5 | 5 |
| 1 |
$\Rightarrow 215=3\times 3\times 5\times 5$
$\Rightarrow 215=\left( 3\times 3 \right)\times \left( 5\times 5 \right)$
$\Rightarrow \sqrt{215}=3\times 5$
$\Rightarrow \sqrt{215}=15$
Similarly the values of other square roots can be calculated but the condition to apply this method is that the number inside the square root should be the square of a positive integer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

