
The value of $\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}$
(a)14
(b)15
(c)16
(d)17
Answer
536.4k+ views
Hint: To solve the question given above, we will assume some value of all the 5 under roots. First we will calculate the value of innermost under root. Then we will calculate the second innermost under root, then the third innermost under root and so on.
Complete step-by-step answer:
To start with, we will assume that the value of $\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}$ is ‘a’, the value of $\sqrt{130+\sqrt{88-\sqrt{44+\sqrt{25}}}}$ is ‘b’, the value of $\sqrt{88-\sqrt{44+\sqrt{25}}}$ is ‘c’, the value of $\sqrt{44+\sqrt{25}}$ is ‘d’ and the value of $\sqrt{25}$ is ‘e’. Thus we will get:
$a=\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}..........\left( 1 \right)$
$b=\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}.......\left( 2 \right)$
$c=\sqrt{88-\sqrt{44+\sqrt{25}}}.........\left( 3 \right)$
$d=\sqrt{44+\sqrt{25}}.........\left( 4 \right)$
$e=\sqrt{25}........\left( 5 \right)$
Now, first we will calculate the value of ‘e’. We know that $\sqrt{25}=5$. Thus, we will get:
$e=5.......\left( 6 \right)$
Now, we know that, from (4) and (5) we have:
$d=\sqrt{44+e}.......\left( 7 \right)$
$\Rightarrow d=\sqrt{44+5}$
$\Rightarrow d=\sqrt{49}$
We know that $\sqrt{49}=7$. So, we will get:
$\Rightarrow d=7$
$\Rightarrow \sqrt{44+\sqrt{25}}=7.......\left( 8 \right)$
From (3) and (8), we will get the following equation:
$\Rightarrow c=\sqrt{88-7}$
$\Rightarrow c=\sqrt{81}$
We know that $\sqrt{81}=9$. Thus, we will get:
$\Rightarrow c=9$
$\Rightarrow \sqrt{88-\sqrt{44+\sqrt{25}}}=9.......\left( 9 \right)$
From (9) and (2), we will get the following equation:
$\Rightarrow b=\sqrt{130-9}$
$\Rightarrow b=\sqrt{121}$
Now, we know that $\sqrt{121}=11$. So we will get:
$\Rightarrow b=11$
$\Rightarrow \sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}=11.........\left( 10 \right)$
From (10) and (1), we will get the following equation:
$\Rightarrow a=\sqrt{214+11}$
$\Rightarrow a=\sqrt{225}$
Now, we know that $\sqrt{225}=15$. Thus, we will get the following equation:
$\Rightarrow a=15$
$\Rightarrow \sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}=15$
Hence, the correct option is (b).
Note: If we do not know the values of square roots of the number given in question, we can calculate it by the method of prime factorisation. For example: The value of $\sqrt{215}$ is calculated by:
$\Rightarrow 215=3\times 3\times 5\times 5$
$\Rightarrow 215=\left( 3\times 3 \right)\times \left( 5\times 5 \right)$
$\Rightarrow \sqrt{215}=3\times 5$
$\Rightarrow \sqrt{215}=15$
Similarly the values of other square roots can be calculated but the condition to apply this method is that the number inside the square root should be the square of a positive integer.
Complete step-by-step answer:
To start with, we will assume that the value of $\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}$ is ‘a’, the value of $\sqrt{130+\sqrt{88-\sqrt{44+\sqrt{25}}}}$ is ‘b’, the value of $\sqrt{88-\sqrt{44+\sqrt{25}}}$ is ‘c’, the value of $\sqrt{44+\sqrt{25}}$ is ‘d’ and the value of $\sqrt{25}$ is ‘e’. Thus we will get:
$a=\sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}..........\left( 1 \right)$
$b=\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}.......\left( 2 \right)$
$c=\sqrt{88-\sqrt{44+\sqrt{25}}}.........\left( 3 \right)$
$d=\sqrt{44+\sqrt{25}}.........\left( 4 \right)$
$e=\sqrt{25}........\left( 5 \right)$
Now, first we will calculate the value of ‘e’. We know that $\sqrt{25}=5$. Thus, we will get:
$e=5.......\left( 6 \right)$
Now, we know that, from (4) and (5) we have:
$d=\sqrt{44+e}.......\left( 7 \right)$
$\Rightarrow d=\sqrt{44+5}$
$\Rightarrow d=\sqrt{49}$
We know that $\sqrt{49}=7$. So, we will get:
$\Rightarrow d=7$
$\Rightarrow \sqrt{44+\sqrt{25}}=7.......\left( 8 \right)$
From (3) and (8), we will get the following equation:
$\Rightarrow c=\sqrt{88-7}$
$\Rightarrow c=\sqrt{81}$
We know that $\sqrt{81}=9$. Thus, we will get:
$\Rightarrow c=9$
$\Rightarrow \sqrt{88-\sqrt{44+\sqrt{25}}}=9.......\left( 9 \right)$
From (9) and (2), we will get the following equation:
$\Rightarrow b=\sqrt{130-9}$
$\Rightarrow b=\sqrt{121}$
Now, we know that $\sqrt{121}=11$. So we will get:
$\Rightarrow b=11$
$\Rightarrow \sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}=11.........\left( 10 \right)$
From (10) and (1), we will get the following equation:
$\Rightarrow a=\sqrt{214+11}$
$\Rightarrow a=\sqrt{225}$
Now, we know that $\sqrt{225}=15$. Thus, we will get the following equation:
$\Rightarrow a=15$
$\Rightarrow \sqrt{214+\sqrt{130-\sqrt{88-\sqrt{44+\sqrt{25}}}}}=15$
Hence, the correct option is (b).
Note: If we do not know the values of square roots of the number given in question, we can calculate it by the method of prime factorisation. For example: The value of $\sqrt{215}$ is calculated by:
3 | 215 |
3 | 75 |
5 | 25 |
5 | 5 |
1 |
$\Rightarrow 215=3\times 3\times 5\times 5$
$\Rightarrow 215=\left( 3\times 3 \right)\times \left( 5\times 5 \right)$
$\Rightarrow \sqrt{215}=3\times 5$
$\Rightarrow \sqrt{215}=15$
Similarly the values of other square roots can be calculated but the condition to apply this method is that the number inside the square root should be the square of a positive integer.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

10 examples of evaporation in daily life with explanations
