
The value of \[\sqrt {{\mathbf{3}}} {\mathbf{cosec2}}{{\mathbf{0}}^ \circ } - {\mathbf{sec2}}{{\mathbf{0}}^ \circ }\;\] is
A.2
B.$\dfrac{{2\sin 20^\circ }}{{\sin 40^\circ }}$
C.4
D.$\dfrac{{4\sin 20^\circ }}{{\sin 40^\circ }}$
Answer
575.4k+ views
Hint: To find the value of this trigonometric expression we will first convert the given trigonometric ratios into sin and cos. Then take LCM and solve. We will get the result in the form of \[sin\left( {A - B} \right)\] form, simplify that such that we will get the value of the required expression.
Complete step-by-step answer:
Given expression is \[\sqrt {{\mathbf{3}}} {\mathbf{cosec2}}{{\mathbf{0}}^ \circ } - {\mathbf{sec2}}{{\mathbf{0}}^ \circ }\;\]
Converting cosec and sec into sin and cos
We get,
\[ = \dfrac{{\sqrt {3 }}}{{sin{20}^\circ}} - \dfrac{1}{{cos{20}^\circ }}\]
Now multiplied and divide the numerator and denominator by 2 we get,
\[ = 2\left( {\dfrac{{\sqrt 3 /2}}{{sin{{20}^ \circ }}} - \dfrac{{1/2}}{{cos{{20}^ \circ }}}} \right)\]
Now write $\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$ and $\cos 60^\circ = \dfrac{1}{2}$
We get,
\[\Rightarrow 2\left( {\dfrac{{sin{{60}^\circ }}}{{sin{{20}^\circ }}} - \dfrac{{cos{{60}^\circ }}}{{cos{{20}^\circ }}}} \right)\]
Taking LCM and solving we get,
\[\Rightarrow 2\left( {\dfrac{{sin{{60}^ \circ }cos{{20}^ \circ } - cos{{60}^ \circ }sin{{20}^ \circ }}}{{sin{{20}^ \circ }cos{{20}^ \circ }}}} \right)\]
Applying sin (A-B) formula we get,
\[\Rightarrow 2\left( {\dfrac{{sin({{60}^ \circ } - {{20}^ \circ })}}{{sin{{20}^ \circ }cos{{20}^ \circ }}}} \right)\]
Or
\[\Rightarrow 2\left( {\dfrac{{sin{{40}^ \circ }}}{{sin{{20}^ \circ }cos{{20}^ \circ }}}} \right)\]
Now applying \[sin2A = 2sinAcosA\] formula
\[ = 2 \times \dfrac{{2sin{{20}^ \circ }cos{{20}^ \circ }}}{{sin{{20}^ \circ }cos{{20}^ \circ }}}\]
By cancelling the like terms
$ = 4$
Hence the value of the expression \[\sqrt {{\mathbf{3}}} {\mathbf{cosec2}}{{\mathbf{0}}^ \circ } - {\mathbf{sec2}}{{\mathbf{0}}^ \circ }\;\] is 4
So, the correct answer is “Option C”.
Note: Generally to solve this type of problems what we do is just convert first the given trigonometric expression into sin and cos trigonometric functions then either simplify or use formulas.
Complete step-by-step answer:
Given expression is \[\sqrt {{\mathbf{3}}} {\mathbf{cosec2}}{{\mathbf{0}}^ \circ } - {\mathbf{sec2}}{{\mathbf{0}}^ \circ }\;\]
Converting cosec and sec into sin and cos
We get,
\[ = \dfrac{{\sqrt {3 }}}{{sin{20}^\circ}} - \dfrac{1}{{cos{20}^\circ }}\]
Now multiplied and divide the numerator and denominator by 2 we get,
\[ = 2\left( {\dfrac{{\sqrt 3 /2}}{{sin{{20}^ \circ }}} - \dfrac{{1/2}}{{cos{{20}^ \circ }}}} \right)\]
Now write $\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$ and $\cos 60^\circ = \dfrac{1}{2}$
We get,
\[\Rightarrow 2\left( {\dfrac{{sin{{60}^\circ }}}{{sin{{20}^\circ }}} - \dfrac{{cos{{60}^\circ }}}{{cos{{20}^\circ }}}} \right)\]
Taking LCM and solving we get,
\[\Rightarrow 2\left( {\dfrac{{sin{{60}^ \circ }cos{{20}^ \circ } - cos{{60}^ \circ }sin{{20}^ \circ }}}{{sin{{20}^ \circ }cos{{20}^ \circ }}}} \right)\]
Applying sin (A-B) formula we get,
\[\Rightarrow 2\left( {\dfrac{{sin({{60}^ \circ } - {{20}^ \circ })}}{{sin{{20}^ \circ }cos{{20}^ \circ }}}} \right)\]
Or
\[\Rightarrow 2\left( {\dfrac{{sin{{40}^ \circ }}}{{sin{{20}^ \circ }cos{{20}^ \circ }}}} \right)\]
Now applying \[sin2A = 2sinAcosA\] formula
\[ = 2 \times \dfrac{{2sin{{20}^ \circ }cos{{20}^ \circ }}}{{sin{{20}^ \circ }cos{{20}^ \circ }}}\]
By cancelling the like terms
$ = 4$
Hence the value of the expression \[\sqrt {{\mathbf{3}}} {\mathbf{cosec2}}{{\mathbf{0}}^ \circ } - {\mathbf{sec2}}{{\mathbf{0}}^ \circ }\;\] is 4
So, the correct answer is “Option C”.
Note: Generally to solve this type of problems what we do is just convert first the given trigonometric expression into sin and cos trigonometric functions then either simplify or use formulas.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

