
The value of \[\sqrt 3 \cos ec20^\circ - \sec 20^\circ\] is equal to
A 4
B 2
C 1
D -4
Answer
583.2k+ views
Hint: First convert the given trigonometric expression in terms of sine and cosine. Next, take the L.C.M. of the denominators. Now, multiply and divide by 2 in both numerator and denominator of the obtained fraction. Use angle sum property of sine to obtain the value of the given expression.
Complete step-by-step answer:
The given trigonometric expression \[\sqrt 3 \cos ec20^\circ - \sec 20^\circ \] is solved as shown below.
\[
\,\,\,\,\,\sqrt 3 \cos ec20^\circ - \sec 20^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{{\sin 20^\circ }} - \dfrac{1}{{\cos 20^\circ }} \\
\]
Now, take the L.C.M. of the denominator as shown below.
\[\dfrac{{\sqrt 3 \cos 20^\circ - \sin 20^\circ }}{{\sin 20^\circ \cos 20^\circ }}\]
Multiply and divide by 2 on both the numerator and denominator of the above expression.
\[
\,\,\,\,\,\dfrac{{\dfrac{2}{2} \times \left( {\sqrt 3 \cos 20^\circ - \sin 20^\circ } \right)}}{{\dfrac{2}{2} \times \left( {\sin 20^\circ \cos 20^\circ } \right)}} \\
\Rightarrow \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2} \cdot \cos 20^\circ - \dfrac{1}{2} \cdot \sin 20^\circ } \right)}}{{\dfrac{1}{2}\left( {2\sin 20^\circ \cos 20^\circ } \right)}} \\
\Rightarrow \dfrac{{2\left( {\sin 60^\circ \cdot \cos 20^\circ - \cos 60^\circ \cdot \sin 20^\circ } \right)}}{{\dfrac{1}{2}\left( {\sin 40^\circ } \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {2\sin A\cos A = \sin 2A} \right) \\
\Rightarrow \dfrac{{4\sin \left( {60^\circ - 20^\circ } \right)}}{{\left( {\sin 40^\circ } \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sin A\cos B - \cos A\sin B = sin\left( {A - B} \right)} \right) \\
\]
Further, simplify the above trigonometric expression.
\[
\,\,\,\,\,\,\,\dfrac{{4\sin 40^\circ }}{{\left( {\sin 40^\circ } \right)}} \\
\Rightarrow 4 \\
\]
Thus, the value of the trigonometric expression \[\sqrt 3 \cos ec20^\circ - \sec 20^\circ \] is 4.
Hence, option (A) is the correct answer.
Note: Try to remember all trigonometric formulas. Use the following trigonometric identities while solving the given problem.
\[
\sin A\cos B - \cos A\sin B = sin\left( {A - B} \right) \\
2\sin A\cos A = \sin 2A \\
\]
Complete step-by-step answer:
The given trigonometric expression \[\sqrt 3 \cos ec20^\circ - \sec 20^\circ \] is solved as shown below.
\[
\,\,\,\,\,\sqrt 3 \cos ec20^\circ - \sec 20^\circ \\
\Rightarrow \dfrac{{\sqrt 3 }}{{\sin 20^\circ }} - \dfrac{1}{{\cos 20^\circ }} \\
\]
Now, take the L.C.M. of the denominator as shown below.
\[\dfrac{{\sqrt 3 \cos 20^\circ - \sin 20^\circ }}{{\sin 20^\circ \cos 20^\circ }}\]
Multiply and divide by 2 on both the numerator and denominator of the above expression.
\[
\,\,\,\,\,\dfrac{{\dfrac{2}{2} \times \left( {\sqrt 3 \cos 20^\circ - \sin 20^\circ } \right)}}{{\dfrac{2}{2} \times \left( {\sin 20^\circ \cos 20^\circ } \right)}} \\
\Rightarrow \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2} \cdot \cos 20^\circ - \dfrac{1}{2} \cdot \sin 20^\circ } \right)}}{{\dfrac{1}{2}\left( {2\sin 20^\circ \cos 20^\circ } \right)}} \\
\Rightarrow \dfrac{{2\left( {\sin 60^\circ \cdot \cos 20^\circ - \cos 60^\circ \cdot \sin 20^\circ } \right)}}{{\dfrac{1}{2}\left( {\sin 40^\circ } \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {2\sin A\cos A = \sin 2A} \right) \\
\Rightarrow \dfrac{{4\sin \left( {60^\circ - 20^\circ } \right)}}{{\left( {\sin 40^\circ } \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sin A\cos B - \cos A\sin B = sin\left( {A - B} \right)} \right) \\
\]
Further, simplify the above trigonometric expression.
\[
\,\,\,\,\,\,\,\dfrac{{4\sin 40^\circ }}{{\left( {\sin 40^\circ } \right)}} \\
\Rightarrow 4 \\
\]
Thus, the value of the trigonometric expression \[\sqrt 3 \cos ec20^\circ - \sec 20^\circ \] is 4.
Hence, option (A) is the correct answer.
Note: Try to remember all trigonometric formulas. Use the following trigonometric identities while solving the given problem.
\[
\sin A\cos B - \cos A\sin B = sin\left( {A - B} \right) \\
2\sin A\cos A = \sin 2A \\
\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

