
The value of $sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right]$ is
A. $1$
B. $0$
C. $ - 1$
D. $\dfrac{\pi }{2}$
Answer
493.2k+ views
Hint: Generally, in Mathematics, the trigonometric Identities are useful whenever trigonometric functions are involved in an expression or an equation and these identities are useful whenever expressions involving trigonometric functions need to be simplified.
Since from given we are asked to find the value of $sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right]$.
We need to apply the trigonometric identities to obtain the required answer.
Formula to be used:
The trigonometric identities that are used to solve the given problem are as follows.
a) \[cot2\theta = \dfrac{{co{t^2}\theta - 1}}{{2cot\theta }}\]
b)\[cos2\theta = \dfrac{{1 - ta{n^2}\theta }}{{1 + ta{n^2}\theta }}\;\]
c) $\tan \theta = \dfrac{1}{{\cot \theta }}$
d) $\cot \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right)$
e) ${\cos ^{ - 1}}\cos \theta = \theta $
f)${\tan ^{ - 1}}\tan \theta = \theta $
Complete step by step answer:
Since from the given that, we are asked to calculate the expression on the trigonometric functions $sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right]$
Let us put $x = \tan \theta $ in the given expression.
Thus, we get
$sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{2\tan \theta }} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]$
Now, we shall apply$\tan \theta = \dfrac{1}{{\cot \theta }}$ in the above equation.
\[ \Rightarrow sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - \dfrac{1}{{{{\cot }^2}\theta }}} \right]}}{{2\dfrac{1}{{\cot \theta }}}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]\]
\[ = sin\left[ {{{\tan }^{ - 1}}\left[ {\dfrac{{{{\cot }^2}\theta - 1}}{{{{\cot }^2}\theta }}} \right] \times \dfrac{{\cot \theta }}{2} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]\]
\[ = sin\left[ {{{\tan }^{ - 1}}\left[ {\dfrac{{{{\cot }^2}\theta - 1}}{{2\cot \theta }}} \right] + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]\]
Now, we need to apply the formulae\[cot2\theta = \dfrac{{co{t^2}\theta - 1}}{{2cot\theta }}\]and \[cos2\theta = \dfrac{{1 - ta{n^2}\theta }}{{1 + ta{n^2}\theta }}\;\]in the above equation.
\[ \Rightarrow sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {{{\tan }^{ - 1}}\cot 2\theta + {{\cos }^{ - 1}}\cos 2\theta } \right]\]
\[ = sin\left[ {{{\tan }^{ - 1}}\tan \left( {\dfrac{\pi }{2} - 2\theta } \right) + {{\cos }^{ - 1}}\cos 2\theta } \right]\] (Here we applied the formula$\cot \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right)$ )
Now, we need to apply the formulas${\cos ^{ - 1}}\cos \theta = \theta $and${\tan ^{ - 1}}\tan \theta = \theta $in the above equation.
Thus, we get
\[ \Rightarrow sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {\dfrac{\pi }{2} - 2\theta + 2\theta } \right]\]
$ = \sin \dfrac{\pi }{2}$
$ = 1$
Hence, $sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = 1$
So, the correct answer is “Option A”.
Note:
If we are asked to calculate the value of a trigonometric expression, we need to first analyze the given problem where we are able to apply the trigonometric identities.
Here, some trigonometric identities/formulae that we applied are needed to know to obtain the desired answer. Hence, we got $sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = 1$.
Since from given we are asked to find the value of $sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right]$.
We need to apply the trigonometric identities to obtain the required answer.
Formula to be used:
The trigonometric identities that are used to solve the given problem are as follows.
a) \[cot2\theta = \dfrac{{co{t^2}\theta - 1}}{{2cot\theta }}\]
b)\[cos2\theta = \dfrac{{1 - ta{n^2}\theta }}{{1 + ta{n^2}\theta }}\;\]
c) $\tan \theta = \dfrac{1}{{\cot \theta }}$
d) $\cot \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right)$
e) ${\cos ^{ - 1}}\cos \theta = \theta $
f)${\tan ^{ - 1}}\tan \theta = \theta $
Complete step by step answer:
Since from the given that, we are asked to calculate the expression on the trigonometric functions $sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right]$
Let us put $x = \tan \theta $ in the given expression.
Thus, we get
$sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{2\tan \theta }} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]$
Now, we shall apply$\tan \theta = \dfrac{1}{{\cot \theta }}$ in the above equation.
\[ \Rightarrow sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - \dfrac{1}{{{{\cot }^2}\theta }}} \right]}}{{2\dfrac{1}{{\cot \theta }}}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]\]
\[ = sin\left[ {{{\tan }^{ - 1}}\left[ {\dfrac{{{{\cot }^2}\theta - 1}}{{{{\cot }^2}\theta }}} \right] \times \dfrac{{\cot \theta }}{2} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]\]
\[ = sin\left[ {{{\tan }^{ - 1}}\left[ {\dfrac{{{{\cot }^2}\theta - 1}}{{2\cot \theta }}} \right] + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {{\tan }^2}\theta } \right]}}{{\left[ {1 + {{\tan }^2}\theta } \right]}}} \right]\]
Now, we need to apply the formulae\[cot2\theta = \dfrac{{co{t^2}\theta - 1}}{{2cot\theta }}\]and \[cos2\theta = \dfrac{{1 - ta{n^2}\theta }}{{1 + ta{n^2}\theta }}\;\]in the above equation.
\[ \Rightarrow sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {{{\tan }^{ - 1}}\cot 2\theta + {{\cos }^{ - 1}}\cos 2\theta } \right]\]
\[ = sin\left[ {{{\tan }^{ - 1}}\tan \left( {\dfrac{\pi }{2} - 2\theta } \right) + {{\cos }^{ - 1}}\cos 2\theta } \right]\] (Here we applied the formula$\cot \theta = \tan \left( {\dfrac{\pi }{2} - \theta } \right)$ )
Now, we need to apply the formulas${\cos ^{ - 1}}\cos \theta = \theta $and${\tan ^{ - 1}}\tan \theta = \theta $in the above equation.
Thus, we get
\[ \Rightarrow sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = sin\left[ {\dfrac{\pi }{2} - 2\theta + 2\theta } \right]\]
$ = \sin \dfrac{\pi }{2}$
$ = 1$
Hence, $sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = 1$
So, the correct answer is “Option A”.
Note:
If we are asked to calculate the value of a trigonometric expression, we need to first analyze the given problem where we are able to apply the trigonometric identities.
Here, some trigonometric identities/formulae that we applied are needed to know to obtain the desired answer. Hence, we got $sin\left[ {{{\tan }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{\left[ {1 - {x^2}} \right]}}{{\left[ {1 + {x^2}} \right]}}} \right] = 1$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

