
The value of $\sinh \left( {{{\cosh }^{ - 1}}x} \right)$ is
A. $\sqrt {{x^2} + 1} $
B. $\dfrac{1}{{\sqrt {{x^2} + 1} }}$
C. $\sqrt {{x^2} - 1} $
D. None of these
Answer
578.1k+ views
Hint:
We will first substitute the value of ${\cosh ^{ - 1}}x$ as $\ln \left( {x + \sqrt {{x^2} - 1} } \right)$. And then we will use the identity $\sinh \theta = \dfrac{1}{2}\left( {{e^\theta } - {e^{ - \theta }}} \right)$. Then, simplify the expression by using properties of logarithm, ${e^{\ln a}} = a$
Complete step by step solution:
As we know $\sinh \theta $ and $\cosh \theta $ are hyperbolic functions.
We have to evaluate the value of $\sinh \left( {{{\cosh }^{ - 1}}x} \right)$
The value of ${\cosh ^{ - 1}}x$ is given as $\ln \left( {x + \sqrt {{x^2} - 1} } \right)$
Hence, we have to calculate the value of $\sinh \left( {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} \right)$
Also, it is known that $\sinh \theta = \dfrac{1}{2}\left( {{e^\theta } - {e^{ - \theta }}} \right)$
Then the value of $\sinh \left( {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} \right)$ is
$
= \dfrac{1}{2}\left( {{e^{\ln \left( {x + \sqrt {{x^2} - 1} } \right)}} - {e^{ - \ln \left( {x + \sqrt {{x^2} - 1} } \right)}}} \right) \\
= \dfrac{1}{2}\left( {{e^{\ln \left( {x + \sqrt {{x^2} - 1} } \right)}} - {e^{\ln {{\left( {x + \sqrt {{x^2} - 1} } \right)}^{ - 1}}}}} \right) \\
$
Next, we will simplify the expression using the property ${e^{\ln a}} = a$
$ = \dfrac{1}{2}\left( {x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }}} \right)$
On simplifying the above expression, we will get,
$
= \dfrac{1}{2}\left( {\dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{x + \sqrt {{x^2} - 1} }}} \right) \\
= \dfrac{1}{2}\left( {\dfrac{{{x^2} + {x^2} - 1 + 2x\sqrt {{x^2} - 1} - 1}}{{x + \sqrt {{x^2} - 1} }}} \right) \\
= \dfrac{1}{2}\left( {\dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }}} \right) \\
$
On taking 2 common
$
= \dfrac{{\left( {{x^2} - 1} \right) + x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} \\
= \sqrt {{x^2} - 1} \left( {\dfrac{{\sqrt {{x^2} - 1} + x}}{{x + \sqrt {{x^2} - 1} }}} \right) \\
= \sqrt {{x^2} - 1} \\
$
Hence, the value of $\sinh \left( {{{\cosh }^{ - 1}}x} \right)$ is \[\sqrt {{x^2} - 1} \]
Thus, option C is correct.
Note:
The functions $\sinh x$ and $\cosh x$ are hyperbolic functions. And the value of $\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}$ and $\cosh = \dfrac{{{e^x} + {e^{ - x}}}}{2}$. Here, ${e^x}$is the natural exponential function.
We will first substitute the value of ${\cosh ^{ - 1}}x$ as $\ln \left( {x + \sqrt {{x^2} - 1} } \right)$. And then we will use the identity $\sinh \theta = \dfrac{1}{2}\left( {{e^\theta } - {e^{ - \theta }}} \right)$. Then, simplify the expression by using properties of logarithm, ${e^{\ln a}} = a$
Complete step by step solution:
As we know $\sinh \theta $ and $\cosh \theta $ are hyperbolic functions.
We have to evaluate the value of $\sinh \left( {{{\cosh }^{ - 1}}x} \right)$
The value of ${\cosh ^{ - 1}}x$ is given as $\ln \left( {x + \sqrt {{x^2} - 1} } \right)$
Hence, we have to calculate the value of $\sinh \left( {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} \right)$
Also, it is known that $\sinh \theta = \dfrac{1}{2}\left( {{e^\theta } - {e^{ - \theta }}} \right)$
Then the value of $\sinh \left( {\ln \left( {x + \sqrt {{x^2} - 1} } \right)} \right)$ is
$
= \dfrac{1}{2}\left( {{e^{\ln \left( {x + \sqrt {{x^2} - 1} } \right)}} - {e^{ - \ln \left( {x + \sqrt {{x^2} - 1} } \right)}}} \right) \\
= \dfrac{1}{2}\left( {{e^{\ln \left( {x + \sqrt {{x^2} - 1} } \right)}} - {e^{\ln {{\left( {x + \sqrt {{x^2} - 1} } \right)}^{ - 1}}}}} \right) \\
$
Next, we will simplify the expression using the property ${e^{\ln a}} = a$
$ = \dfrac{1}{2}\left( {x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }}} \right)$
On simplifying the above expression, we will get,
$
= \dfrac{1}{2}\left( {\dfrac{{{{\left( {x + \sqrt {{x^2} - 1} } \right)}^2} - 1}}{{x + \sqrt {{x^2} - 1} }}} \right) \\
= \dfrac{1}{2}\left( {\dfrac{{{x^2} + {x^2} - 1 + 2x\sqrt {{x^2} - 1} - 1}}{{x + \sqrt {{x^2} - 1} }}} \right) \\
= \dfrac{1}{2}\left( {\dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }}} \right) \\
$
On taking 2 common
$
= \dfrac{{\left( {{x^2} - 1} \right) + x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }} \\
= \sqrt {{x^2} - 1} \left( {\dfrac{{\sqrt {{x^2} - 1} + x}}{{x + \sqrt {{x^2} - 1} }}} \right) \\
= \sqrt {{x^2} - 1} \\
$
Hence, the value of $\sinh \left( {{{\cosh }^{ - 1}}x} \right)$ is \[\sqrt {{x^2} - 1} \]
Thus, option C is correct.
Note:
The functions $\sinh x$ and $\cosh x$ are hyperbolic functions. And the value of $\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}$ and $\cosh = \dfrac{{{e^x} + {e^{ - x}}}}{2}$. Here, ${e^x}$is the natural exponential function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

