
The value of \[\sin \left[ \left( \dfrac{\pi }{2} \right)-{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right) \right]=\]
A.\[\dfrac{\sqrt{3}}{2}\]
B.\[\dfrac{-\sqrt{3}}{2}\]
C.\[\dfrac{1}{2}\]
D.\[\dfrac{-1}{2}\]
Answer
506.4k+ views
Hint: An equation which involves trigonometric ratio of any angle is said to be a trigonometric identity if it is satisfied for all values for which the given trigonometric ratios are defined. Trigonometric functions are periodic functions and all trigonometric functions are not bijections. Consequently their inverse does not exist. If no branch of an inverse trigonometric function is given, then it means that the principal value branch of the function. An inverse function reverses the direction of the original function.
Complete step-by-step answer:
\[\sin \left[ \left( \dfrac{\pi }{2} \right)-{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right) \right]\]
Applying the inverse trigonometric identities to solve the problem
As we know that \[{{\sin }^{-1}}(-x)=-{{\sin }^{-1}}x\]
\[\Rightarrow \sin \left[ \left( \dfrac{\pi }{2} \right)+{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \right]\]
Using another trigonometric identity \[\left[ {{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \right]=\dfrac{\pi }{3}\] we get
\[\Rightarrow \sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{3} \right)\]
An trigonometric identity represents a relationship that is always true. A conditional relationship represents an equation which is sometimes true.
The domain of \[{{\sin }^{-1}}x\] is \[\left[ -1,1 \right]\] and range is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
\[\Rightarrow \sin \left( \dfrac{5\pi }{6} \right)\]
We can rewrite the above function as
\[\Rightarrow \sin \left( \pi -\dfrac{\pi }{6} \right)\]
Using the trigonometric identity we get
\[\Rightarrow \sin \dfrac{\pi }{6}\]
Further using the trigonometric identity we get
\[\Rightarrow \sin \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}\]
Hence we conclude that \[\sin \left[ \left( \dfrac{\pi }{2} \right)-{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right) \right]=\dfrac{\sqrt{3}}{2}\]
Therefore, option \[A\] is the correct answer.
So, the correct answer is “Option A”.
Note: Before solving the trigonometric problems, one must be familiar with the trigonometric ratios, trigonometric identities, inverse trigonometric functions and trigonometric applications. The word ‘trigonometry’ is derived from the Greek words ‘tri’ which means three, ‘gon’ (means sides) and ‘metron’ (means measure). Trigonometry is the study of relationships between the sides and angles of a triangle. Some ratios of the sides with respect to its acute angles, called trigonometric ratios of the angle. If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of the angle can be easily determined.
Complete step-by-step answer:
\[\sin \left[ \left( \dfrac{\pi }{2} \right)-{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right) \right]\]
Applying the inverse trigonometric identities to solve the problem
As we know that \[{{\sin }^{-1}}(-x)=-{{\sin }^{-1}}x\]
\[\Rightarrow \sin \left[ \left( \dfrac{\pi }{2} \right)+{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \right]\]
Using another trigonometric identity \[\left[ {{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \right]=\dfrac{\pi }{3}\] we get
\[\Rightarrow \sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{3} \right)\]
An trigonometric identity represents a relationship that is always true. A conditional relationship represents an equation which is sometimes true.
The domain of \[{{\sin }^{-1}}x\] is \[\left[ -1,1 \right]\] and range is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
\[\Rightarrow \sin \left( \dfrac{5\pi }{6} \right)\]
We can rewrite the above function as
\[\Rightarrow \sin \left( \pi -\dfrac{\pi }{6} \right)\]
Using the trigonometric identity we get
\[\Rightarrow \sin \dfrac{\pi }{6}\]
Further using the trigonometric identity we get
\[\Rightarrow \sin \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}\]
Hence we conclude that \[\sin \left[ \left( \dfrac{\pi }{2} \right)-{{\sin }^{-1}}\left( \dfrac{-\sqrt{3}}{2} \right) \right]=\dfrac{\sqrt{3}}{2}\]
Therefore, option \[A\] is the correct answer.
So, the correct answer is “Option A”.
Note: Before solving the trigonometric problems, one must be familiar with the trigonometric ratios, trigonometric identities, inverse trigonometric functions and trigonometric applications. The word ‘trigonometry’ is derived from the Greek words ‘tri’ which means three, ‘gon’ (means sides) and ‘metron’ (means measure). Trigonometry is the study of relationships between the sides and angles of a triangle. Some ratios of the sides with respect to its acute angles, called trigonometric ratios of the angle. If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of the angle can be easily determined.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

