
The value of $\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)$ is equal to:
A. $\dfrac{1}{2}$
B. $ - \dfrac{1}{2}$
C. $\dfrac{1}{4}$
D. $1$
Answer
511.2k+ views
Hint:The given question requires us to find the value of the product of two sine functions with different angles. So, we will do the basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as $\sin \left( {{{90}^ \circ } - x} \right) = \cos x$ and double angle formula for sine. Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem. We must know the simplification rules to solve the problem with ease.
Complete step by step answer:
In the given problem, we have to find value of $\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)$.
So, we have, $\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)$
Using the trigonometric identity $\sin \left( {{{90}^ \circ } - x} \right) = \cos x$, we get,
$ \Rightarrow \sin \left( {\dfrac{\pi }{{10}}} \right)\cos \left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{{10}}} \right)$
Simplifying the angle in cosine, we get,
$ \Rightarrow \sin \left( {\dfrac{\pi }{{10}}} \right)\cos \left( {\dfrac{{5\pi - 3\pi }}{{10}}} \right)$
$ \Rightarrow \sin \left( {\dfrac{\pi }{{10}}} \right)\cos \left( {\dfrac{{2\pi }}{{10}}} \right)$
Multiplying and dividing the expression by $2\cos \left( {\dfrac{\pi }{{10}}} \right)$, we get,
$ \Rightarrow \dfrac{{2\cos \left( {\dfrac{\pi }{{10}}} \right)}}{{2\cos \left( {\dfrac{\pi }{{10}}} \right)}} \times \sin \left( {\dfrac{\pi }{{10}}} \right)\cos \left( {\dfrac{{2\pi }}{{10}}} \right)$
Now, using the double angle formula for sine $\sin 2x = 2\sin x\cos x$, we get,
$ \Rightarrow \dfrac{{\sin \left( {\dfrac{{2\pi }}{{10}}} \right)}}{{2\cos \left( {\dfrac{\pi }{{10}}} \right)}} \times \cos \left( {\dfrac{{2\pi }}{{10}}} \right)$
Now, multiplying and dividing the expression by $2$, we get,
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{2\pi }}{{10}}} \right)\cos \left( {\dfrac{{2\pi }}{{10}}} \right)}}{{2 \times 2\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
Now, using the double angle formula for sine again, we get,
$ \Rightarrow \dfrac{{\sin \left( {\dfrac{{4\pi }}{{10}}} \right)}}{{4\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
Now, we know that sine and cosine are complementary trigonometric functions. So, we get,
$ \Rightarrow \dfrac{{\cos \left( {\dfrac{\pi }{2} - \dfrac{{4\pi }}{{10}}} \right)}}{{4\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
Simplifying the expression further, we get,
$ \Rightarrow \dfrac{{\cos \left( {\dfrac{{5\pi - 4\pi }}{{10}}} \right)}}{{4\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
$ \Rightarrow \dfrac{{\cos \left( {\dfrac{\pi }{{10}}} \right)}}{{4\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
Cancelling the common factors in numerator and denominator, we get,
$ \Rightarrow \dfrac{1}{4}$
So, the value of the trigonometric expression $\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)$ is $\dfrac{1}{4}$.
Hence, option C is the correct answer.
Note:We must have a strong grip over the concepts of trigonometry, related formulae and rules to ace these types of questions. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Complete step by step answer:
In the given problem, we have to find value of $\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)$.
So, we have, $\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)$
Using the trigonometric identity $\sin \left( {{{90}^ \circ } - x} \right) = \cos x$, we get,
$ \Rightarrow \sin \left( {\dfrac{\pi }{{10}}} \right)\cos \left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{{10}}} \right)$
Simplifying the angle in cosine, we get,
$ \Rightarrow \sin \left( {\dfrac{\pi }{{10}}} \right)\cos \left( {\dfrac{{5\pi - 3\pi }}{{10}}} \right)$
$ \Rightarrow \sin \left( {\dfrac{\pi }{{10}}} \right)\cos \left( {\dfrac{{2\pi }}{{10}}} \right)$
Multiplying and dividing the expression by $2\cos \left( {\dfrac{\pi }{{10}}} \right)$, we get,
$ \Rightarrow \dfrac{{2\cos \left( {\dfrac{\pi }{{10}}} \right)}}{{2\cos \left( {\dfrac{\pi }{{10}}} \right)}} \times \sin \left( {\dfrac{\pi }{{10}}} \right)\cos \left( {\dfrac{{2\pi }}{{10}}} \right)$
Now, using the double angle formula for sine $\sin 2x = 2\sin x\cos x$, we get,
$ \Rightarrow \dfrac{{\sin \left( {\dfrac{{2\pi }}{{10}}} \right)}}{{2\cos \left( {\dfrac{\pi }{{10}}} \right)}} \times \cos \left( {\dfrac{{2\pi }}{{10}}} \right)$
Now, multiplying and dividing the expression by $2$, we get,
$ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{2\pi }}{{10}}} \right)\cos \left( {\dfrac{{2\pi }}{{10}}} \right)}}{{2 \times 2\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
Now, using the double angle formula for sine again, we get,
$ \Rightarrow \dfrac{{\sin \left( {\dfrac{{4\pi }}{{10}}} \right)}}{{4\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
Now, we know that sine and cosine are complementary trigonometric functions. So, we get,
$ \Rightarrow \dfrac{{\cos \left( {\dfrac{\pi }{2} - \dfrac{{4\pi }}{{10}}} \right)}}{{4\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
Simplifying the expression further, we get,
$ \Rightarrow \dfrac{{\cos \left( {\dfrac{{5\pi - 4\pi }}{{10}}} \right)}}{{4\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
$ \Rightarrow \dfrac{{\cos \left( {\dfrac{\pi }{{10}}} \right)}}{{4\cos \left( {\dfrac{\pi }{{10}}} \right)}}$
Cancelling the common factors in numerator and denominator, we get,
$ \Rightarrow \dfrac{1}{4}$
So, the value of the trigonometric expression $\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)$ is $\dfrac{1}{4}$.
Hence, option C is the correct answer.
Note:We must have a strong grip over the concepts of trigonometry, related formulae and rules to ace these types of questions. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

