
The value of $\sin \left( {90^\circ - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90^\circ - \theta } \right)$ is:
A) 0
B) 1
C) 2
D) None of these
Answer
581.7k+ views
Hint:
We can use trigonometric identities to expand the difference of angles on both the terms. Then we can substitute the values of the trigonometric ratios at constant angles. Then we can simplify the terms and apply suitable identity to obtain the required solution.
Complete step by step solution:
We need to find the value of the expression $\sin \left( {90 - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90 - \theta } \right)$
Let $I = \sin \left( {90^\circ - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90^\circ - \theta } \right)$
Let ${I_1} = \sin \left( {90^\circ - \theta } \right).\cos \theta \,\,$ and ${I_2} = \sin \theta .\cos \left( {90^\circ - \theta } \right)$ …. (1)
Now consider the 1st term,
$ \Rightarrow {I_1} = \sin \left( {90^\circ - \theta } \right).\cos \theta \,\,$
We know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ . On using this identity, we get
$ \Rightarrow {I_1} = \left( {\sin 90^\circ \cos \theta - \cos 90^\circ \sin \theta } \right).\cos \theta \,\,$
We know that $\sin 90^\circ = 1$ and $\cos 90^\circ = 0$ on substituting these values, we get,
$ \Rightarrow {I_1} = \left( {1 \times \cos \theta - 0 \times \sin \theta } \right).\cos \theta \,\,$
On simplification, we get
$ \Rightarrow {I_1} = \left( {\cos \theta } \right).\cos \theta \,\,$
So, we have
$ \Rightarrow {I_1} = {\cos ^2}\theta \,\,$ …. (2)
Now we can consider the 2nd term.
$ \Rightarrow {I_2} = \sin \theta .\cos \left( {90^\circ - \theta } \right)$
We know that $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$ . On using this identity, we get
$ \Rightarrow {I_2} = \sin \theta .\left( {\cos 90^\circ \cos \theta + \sin 90^\circ \sin \theta } \right)$
We know that $\sin 90^\circ = 1$ and $\cos 90^\circ = 0$ on substituting these values, we get
$ \Rightarrow {I_2} = \sin \theta .\left( {0 \times \cos \theta + 1 \times \sin \theta } \right)$
On further simplification, we get
$ \Rightarrow {I_2} = \sin \theta .\left( {0 + \sin \theta } \right)$
So, we get
$ \Rightarrow {I_2} = {\sin ^2}\theta $ …. (3)
Now we can substitute these in the expression we need to find the value. Then, we get
$ \Rightarrow I = \sin \left( {90^\circ - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90^\circ - \theta } \right)$
On substituting equation (1), we will obtain
$ \Rightarrow I = {I_1} + {I_2}$
Now we can substitute equations (2) and (3). So, we get
$ \Rightarrow I = {\cos ^2}\theta + {\sin ^2}\theta $
We know that ${\cos ^2}\theta + {\sin ^2}\theta = 1$ . On applying this identity, we get
$ \Rightarrow I = 1$
Therefore, the required value of the given expression is 1.
So, the correct answer is option B.
Note:
Alternate method to solve this problem is given by,
We need to find the value of the expression $\sin \left( {90 - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90 - \theta } \right)$
Let $I = \sin \left( {90 - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90 - \theta } \right)$
We know that $\sin \left( {90 - \theta } \right) = \cos \theta $ and $\cos \left( {90 - \theta } \right) = \sin \theta $ . On substituting these equations, our expression will become
$I = \cos \theta \times \cos \theta + \sin \theta \times \sin \theta $
We can write them as squares. So, we will get
$I = {\cos ^2}\theta + {\sin ^2}\theta $
We know that ${\cos ^2}\theta + {\sin ^2}\theta = 1$ . On applying this identity, we get
$ \Rightarrow I = 1$
Therefore, the required value of the given expression is 1.
We can use trigonometric identities to expand the difference of angles on both the terms. Then we can substitute the values of the trigonometric ratios at constant angles. Then we can simplify the terms and apply suitable identity to obtain the required solution.
Complete step by step solution:
We need to find the value of the expression $\sin \left( {90 - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90 - \theta } \right)$
Let $I = \sin \left( {90^\circ - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90^\circ - \theta } \right)$
Let ${I_1} = \sin \left( {90^\circ - \theta } \right).\cos \theta \,\,$ and ${I_2} = \sin \theta .\cos \left( {90^\circ - \theta } \right)$ …. (1)
Now consider the 1st term,
$ \Rightarrow {I_1} = \sin \left( {90^\circ - \theta } \right).\cos \theta \,\,$
We know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ . On using this identity, we get
$ \Rightarrow {I_1} = \left( {\sin 90^\circ \cos \theta - \cos 90^\circ \sin \theta } \right).\cos \theta \,\,$
We know that $\sin 90^\circ = 1$ and $\cos 90^\circ = 0$ on substituting these values, we get,
$ \Rightarrow {I_1} = \left( {1 \times \cos \theta - 0 \times \sin \theta } \right).\cos \theta \,\,$
On simplification, we get
$ \Rightarrow {I_1} = \left( {\cos \theta } \right).\cos \theta \,\,$
So, we have
$ \Rightarrow {I_1} = {\cos ^2}\theta \,\,$ …. (2)
Now we can consider the 2nd term.
$ \Rightarrow {I_2} = \sin \theta .\cos \left( {90^\circ - \theta } \right)$
We know that $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$ . On using this identity, we get
$ \Rightarrow {I_2} = \sin \theta .\left( {\cos 90^\circ \cos \theta + \sin 90^\circ \sin \theta } \right)$
We know that $\sin 90^\circ = 1$ and $\cos 90^\circ = 0$ on substituting these values, we get
$ \Rightarrow {I_2} = \sin \theta .\left( {0 \times \cos \theta + 1 \times \sin \theta } \right)$
On further simplification, we get
$ \Rightarrow {I_2} = \sin \theta .\left( {0 + \sin \theta } \right)$
So, we get
$ \Rightarrow {I_2} = {\sin ^2}\theta $ …. (3)
Now we can substitute these in the expression we need to find the value. Then, we get
$ \Rightarrow I = \sin \left( {90^\circ - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90^\circ - \theta } \right)$
On substituting equation (1), we will obtain
$ \Rightarrow I = {I_1} + {I_2}$
Now we can substitute equations (2) and (3). So, we get
$ \Rightarrow I = {\cos ^2}\theta + {\sin ^2}\theta $
We know that ${\cos ^2}\theta + {\sin ^2}\theta = 1$ . On applying this identity, we get
$ \Rightarrow I = 1$
Therefore, the required value of the given expression is 1.
So, the correct answer is option B.
Note:
Alternate method to solve this problem is given by,
We need to find the value of the expression $\sin \left( {90 - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90 - \theta } \right)$
Let $I = \sin \left( {90 - \theta } \right).\cos \theta + \sin \theta .\cos \left( {90 - \theta } \right)$
We know that $\sin \left( {90 - \theta } \right) = \cos \theta $ and $\cos \left( {90 - \theta } \right) = \sin \theta $ . On substituting these equations, our expression will become
$I = \cos \theta \times \cos \theta + \sin \theta \times \sin \theta $
We can write them as squares. So, we will get
$I = {\cos ^2}\theta + {\sin ^2}\theta $
We know that ${\cos ^2}\theta + {\sin ^2}\theta = 1$ . On applying this identity, we get
$ \Rightarrow I = 1$
Therefore, the required value of the given expression is 1.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

