
The value of \[\sin \left( {{360}^{\circ }}-\theta \right)\] is
a. \[-\sin \theta \]
b. \[-\cos \theta \]
c. \[\cos \theta \]
d. \[\sin \theta \]
Answer
600.9k+ views
Hint: Find the trigonometric ratios of function \[\theta \] and compare them to \[\left( 360-\theta \right)\]. \[\theta \] and \[\left( 360-\theta \right)\] are co – terminate angles i.e. they have a common terminal side. Thus get the value \[\sin \left( 360-\theta \right)\] from \[\sin \left( -\theta \right)\].
Complete step-by-step answer:
The trigonometric ratios of \[\left( 360-\theta \right)\], the terminal sides of co – terminal angles coincide, hence their trigonometric ratios are the same.
We know that,
\[\sin \left( -\theta \right)=-\sin \theta \]
Similarly, \[\sin \left( 360-\theta \right)=-\sin \theta \].
Thus we can clearly state that \[\left( 360-\theta \right)\] and \[\left( -\theta \right)\] are co – terminal sides. For example angles \[{{30}^{\circ }},-{{300}^{\circ }}\] and \[{{390}^{\circ }}\] are all terminal.
We can also state other examples like \[{{45}^{\circ }},{{405}^{\circ }}\] and \[-{{315}^{\circ }}\].
We can find the co – terminal angles of other functions.
\[\begin{align}
& \sin \left( -\theta \right)=-\sin \theta \\
& \cos \left( -\theta \right)=\cos \theta \\
& \tan \left( -\theta \right)=-\tan \theta \\
& \therefore \sin \left( 360-\theta \right)=-\sin \theta \\
& \cos \left( 360-\theta \right)=\cos \theta \\
& \tan \left( 360-\theta \right)=-\tan \theta \\
\end{align}\]
Thus we got the value of \[\sin \left( 360-\theta \right)=-\sin \theta \].
\[\therefore \] Option (a) is correct.
Note: If you know the trigonometric ratios of \[\theta \], then you can easily find \[\left( 360-\theta \right)\] of any function. Thus remember the functions so you can easily find the other functions values.
Complete step-by-step answer:
The trigonometric ratios of \[\left( 360-\theta \right)\], the terminal sides of co – terminal angles coincide, hence their trigonometric ratios are the same.
We know that,
\[\sin \left( -\theta \right)=-\sin \theta \]
Similarly, \[\sin \left( 360-\theta \right)=-\sin \theta \].
Thus we can clearly state that \[\left( 360-\theta \right)\] and \[\left( -\theta \right)\] are co – terminal sides. For example angles \[{{30}^{\circ }},-{{300}^{\circ }}\] and \[{{390}^{\circ }}\] are all terminal.
We can also state other examples like \[{{45}^{\circ }},{{405}^{\circ }}\] and \[-{{315}^{\circ }}\].
We can find the co – terminal angles of other functions.
\[\begin{align}
& \sin \left( -\theta \right)=-\sin \theta \\
& \cos \left( -\theta \right)=\cos \theta \\
& \tan \left( -\theta \right)=-\tan \theta \\
& \therefore \sin \left( 360-\theta \right)=-\sin \theta \\
& \cos \left( 360-\theta \right)=\cos \theta \\
& \tan \left( 360-\theta \right)=-\tan \theta \\
\end{align}\]
Thus we got the value of \[\sin \left( 360-\theta \right)=-\sin \theta \].
\[\therefore \] Option (a) is correct.
Note: If you know the trigonometric ratios of \[\theta \], then you can easily find \[\left( 360-\theta \right)\] of any function. Thus remember the functions so you can easily find the other functions values.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

