
The value of $\sin i = $
$
\left( a \right)\dfrac{{{e^2} - 1}}{2} \\
\left( b \right)\dfrac{{{e^2} - 1}}{{2e}} \\
\left( c \right)i\left( {\dfrac{{{e^2} - 1}}{{2e}}} \right) \\
\left( d \right)i\left( {\dfrac{{{e^2} - 1}}{2}} \right) \\
$
Answer
598.8k+ views
Hint-In this question, we use the concept of Euler's form. Euler is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's form, ${e^{i\theta }} = \cos \theta + i\sin \theta $.
Complete step-by-step solution -
Now, we use Euler's form to find the value of $\sin i$.
Euler's form, ${e^{i\theta }} = \cos \theta + i\sin \theta ...........\left( 1 \right)$
Now, we substitute $ - \theta {\text{ in place of }}\theta $ in (1) equation.
${e^{i\left( { - \theta } \right)}} = \cos \left( { - \theta } \right) + i\sin \left( { - \theta } \right)$
We know according to trigonometric function, $\cos \left( { - \theta } \right) = \cos \theta {\text{ and }}\sin \left( { - \theta } \right) = - \sin \theta $
${e^{ - i\theta }} = \cos \theta - i\sin \theta ...........\left( 2 \right)$
Now, subtract (2) equation from (1) equation.
$
{e^{i\theta }} - {e^{ - i\theta }} = \left( {\cos \theta + i\sin \theta } \right) - \left( {\cos \theta - i\sin \theta } \right) \\
\Rightarrow {e^{i\theta }} - {e^{ - i\theta }} = 2i\sin \theta \\
\Rightarrow i\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{2} \\
$
Now, Multiply by $i$ on both sides of the equation.
\[ \Rightarrow {i^2}\sin \theta = i\left( {\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{2}} \right)\]
As we know, ${i^2} = - 1$
\[
\Rightarrow - \sin \theta = i\left( {\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{2}} \right) \\
\Rightarrow \sin \theta = i\left( {\dfrac{{{e^{ - i\theta }} - {e^{i\theta }}}}{2}} \right) \\
\Rightarrow \sin \theta = i\left( {\dfrac{{\dfrac{1}{{{e^{i\theta }}}} - {e^{i\theta }}}}{2}} \right) \\
\Rightarrow \sin \theta = i\left( {\dfrac{{1 - {e^{i2\theta }}}}{{2{e^{i\theta }}}}} \right) \\
\]
Now, we have to find $\sin i$ so put the value of $\theta = i$ .
\[ \Rightarrow \sin i = i\left( {\dfrac{{1 - {e^{2{i^2}}}}}{{2{e^{{i^2}}}}}} \right)\]
As we know, ${i^2} = - 1$
\[
\Rightarrow \sin i = i\left( {\dfrac{{1 - {e^{ - 2}}}}{{2{e^{ - 1}}}}} \right) \\
\Rightarrow \sin i = i\left( {\dfrac{{1 - \dfrac{1}{{{e^2}}}}}{{\dfrac{2}{e}}}} \right) \\
\Rightarrow \sin i = i\left( {\dfrac{{{e^2} - 1}}{{2e}}} \right) \\
\]
So, the correct option is (c).
Note-In such types of problems we use some important points to solve questions in an easy way. Like first we use the value of Euler’s form ${e^{i\theta }} = \cos \theta + i\sin \theta $ and find the value of its conjugate ${e^{ - i\theta }} = \cos \theta - i\sin \theta $ then if we find the value of $\sin i$ so we subtract both equations and put the value of $\theta = i$ .
Complete step-by-step solution -
Now, we use Euler's form to find the value of $\sin i$.
Euler's form, ${e^{i\theta }} = \cos \theta + i\sin \theta ...........\left( 1 \right)$
Now, we substitute $ - \theta {\text{ in place of }}\theta $ in (1) equation.
${e^{i\left( { - \theta } \right)}} = \cos \left( { - \theta } \right) + i\sin \left( { - \theta } \right)$
We know according to trigonometric function, $\cos \left( { - \theta } \right) = \cos \theta {\text{ and }}\sin \left( { - \theta } \right) = - \sin \theta $
${e^{ - i\theta }} = \cos \theta - i\sin \theta ...........\left( 2 \right)$
Now, subtract (2) equation from (1) equation.
$
{e^{i\theta }} - {e^{ - i\theta }} = \left( {\cos \theta + i\sin \theta } \right) - \left( {\cos \theta - i\sin \theta } \right) \\
\Rightarrow {e^{i\theta }} - {e^{ - i\theta }} = 2i\sin \theta \\
\Rightarrow i\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{2} \\
$
Now, Multiply by $i$ on both sides of the equation.
\[ \Rightarrow {i^2}\sin \theta = i\left( {\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{2}} \right)\]
As we know, ${i^2} = - 1$
\[
\Rightarrow - \sin \theta = i\left( {\dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{2}} \right) \\
\Rightarrow \sin \theta = i\left( {\dfrac{{{e^{ - i\theta }} - {e^{i\theta }}}}{2}} \right) \\
\Rightarrow \sin \theta = i\left( {\dfrac{{\dfrac{1}{{{e^{i\theta }}}} - {e^{i\theta }}}}{2}} \right) \\
\Rightarrow \sin \theta = i\left( {\dfrac{{1 - {e^{i2\theta }}}}{{2{e^{i\theta }}}}} \right) \\
\]
Now, we have to find $\sin i$ so put the value of $\theta = i$ .
\[ \Rightarrow \sin i = i\left( {\dfrac{{1 - {e^{2{i^2}}}}}{{2{e^{{i^2}}}}}} \right)\]
As we know, ${i^2} = - 1$
\[
\Rightarrow \sin i = i\left( {\dfrac{{1 - {e^{ - 2}}}}{{2{e^{ - 1}}}}} \right) \\
\Rightarrow \sin i = i\left( {\dfrac{{1 - \dfrac{1}{{{e^2}}}}}{{\dfrac{2}{e}}}} \right) \\
\Rightarrow \sin i = i\left( {\dfrac{{{e^2} - 1}}{{2e}}} \right) \\
\]
So, the correct option is (c).
Note-In such types of problems we use some important points to solve questions in an easy way. Like first we use the value of Euler’s form ${e^{i\theta }} = \cos \theta + i\sin \theta $ and find the value of its conjugate ${e^{ - i\theta }} = \cos \theta - i\sin \theta $ then if we find the value of $\sin i$ so we subtract both equations and put the value of $\theta = i$ .
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

