
The value of $\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\sin \dfrac{7\pi }{14}\sin \dfrac{9\pi }{14}\sin \dfrac{11\pi }{14}\sin \dfrac{13\pi }{14}$ is
\[\begin{align}
& A.\dfrac{1}{16} \\
& B.\dfrac{1}{64} \\
& C.\dfrac{1}{128} \\
& D.\dfrac{1}{32} \\
\end{align}\]
Answer
508.5k+ views
Hint: Here, we apply the concept of trigonometric ratios and identities. Some important trigonometric identities for angles used in this particular question are:
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \\
& \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta \\
& \sin \left( \pi -\theta \right)=\sin \theta \\
& \sin \left( \pi +\theta \right)=-\sin \theta \\
\end{align}\]
\[\begin{align}
& \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cos \left( \dfrac{\pi }{2}+\theta \right)=-\sin \theta \\
& \cos \left( \pi -\theta \right)=-\cos \theta \\
& \cos \left( \pi +\theta \right)=-\cos \theta \\
\end{align}\]
Firstly, we will convert the last three terms of the given question according to the first three terms. The middle term becomes 1 $\left( \because \sin \dfrac{7\pi }{14}=\sin \dfrac{\pi }{2}=1 \right)$
Therefore, after combining the all terms and manipulating the values according to above 8 fundamental formulas, we get the constant answer.
Complete step-by-step solution:
Let’s jump to the question, we have:
\[A=\left( \sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\sin \dfrac{7\pi }{14}\sin \dfrac{9\pi }{14}\sin \dfrac{11\pi }{14}\sin \dfrac{13\pi }{14} \right)\cdots \cdots \cdots (i)\]
Here, considering the middle term and expressing its value, we have \[\sin \dfrac{7\pi }{14}=\sin \dfrac{\pi }{2}=1\]
Now, let us take the term $\sin \dfrac{9\pi }{14}$ can be written as $\sin \left( \dfrac{14\pi -5\pi }{14} \right)$
\[\begin{align}
& \therefore \sin \left( \dfrac{14\pi }{14}-\dfrac{5\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{5\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{5\pi }{14} \right)\left( \because \sin \left( \pi -\theta \right)=\sin \theta \right) \\
\end{align}\]
Similarly, for the term $\sin \dfrac{11\pi }{14}$ we can write it as $\sin \left( \dfrac{14\pi -3\pi }{14} \right)$
Now, applying identities and simplifying, we have
\[\begin{align}
& \therefore \sin \dfrac{11\pi }{14}=\sin \left( \dfrac{14\pi -3\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{3\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{3\pi }{14} \right) \\
\end{align}\]
And now, let us do the same for next term,
\[\begin{align}
& \sin \dfrac{13\pi }{14}=\sin \left( \dfrac{14\pi -\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{14} \right) \\
\end{align}\]
Now, from equation (i) we have,
\[\begin{align}
& A=\left( \sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\times \left( 1 \right)\times \dfrac{5\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{\pi }{14} \right) \\
& A={{\left( \sin \dfrac{\pi }{14}\cdot \sin \dfrac{3\pi }{14}\cdot \sin \dfrac{5\pi }{14} \right)}^{2}} \\
\end{align}\]
Now, for the next term, we have
\[\begin{align}
& \sin \dfrac{\pi }{14}=\sin \left( \dfrac{7\pi -6\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{3\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{3\pi }{7} \right)\left( \because \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \right) \\
\end{align}\]
Similarly, we can also simplify the below term as
\[\begin{align}
& \sin \dfrac{3\pi }{14}=\sin \left( \dfrac{7\pi -4\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{2\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{2\pi }{7} \right) \\
\end{align}\]
And now we have
\[\begin{align}
& \sin \dfrac{5\pi }{14}=\sin \left( \dfrac{7\pi -2\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{\pi }{7} \right) \\
\end{align}\]
Hence, combining all the results obtained above, we can write the expression as \[A={{\left( \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}}\]
Now, we will multiply and divide above expression with $\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)$ therefore, we get:
\[\begin{align}
& A=\dfrac{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}} \\
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( 2\sin \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}} \\
\end{align}\]
We know, \[\Rightarrow 2\sin \theta \cos \theta =\sin 2\theta \]
Hence, \[2\sin \dfrac{\pi }{7}\cdot \cos \dfrac{\pi }{7}=\left( \sin \dfrac{2\pi }{7} \right)\]
Now, substituting this in the expression, we have
\[\begin{align}
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right)}^{2}} \\
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{2}{2}\cdot \sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right)}^{2}} \\
\end{align}\]
Now, multiply and divide by 2 inside the bracket.
\[\begin{align}
& \therefore 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}=\sin \dfrac{4\pi }{7} \\
& \text{And} \\
& \text{cos}\dfrac{3\pi }{7}=\cos \left( \dfrac{7\pi -4\pi }{7} \right) \\
& \Rightarrow \cos \left( \pi -\dfrac{4\pi }{7} \right)= - \cos \dfrac{4\pi }{7}\left( \because \cos \left( \pi -\theta \right)=-\cos \theta \right) \\
\end{align}\]
\[\begin{align}
& \therefore A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{1}{2}\times \sin \dfrac{4\pi }{7}\cdot \left( -\cos \dfrac{4\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{2\times 2}\times 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{4\pi }{7} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{4}\times \sin \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{4}\times \sin \left( \dfrac{7\pi +\pi }{7} \right) \right)}^{2}} \\
\end{align}\]
We know, \[\sin \left( \pi +\theta \right)=-\sin \theta \]
\[\begin{align}
& \therefore \sin \left( \dfrac{7\pi +\pi }{7} \right)=\sin \left( \pi +\dfrac{\pi }{7} \right)=-\sin \left( \dfrac{\pi }{7} \right) \\
& A=\dfrac{1}{4{{\sin }^{2}}\dfrac{\pi }{7}}{{\left( \dfrac{-1}{4}\times \left( -\sin \dfrac{\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow \dfrac{1}{4{{\sin }^{2}}\dfrac{\pi }{7}}{{\left( \dfrac{1}{4} \right)}^{2}}{{\left( \sin \dfrac{\pi }{7} \right)}^{2}} \\
\end{align}\]
Cancelling ${{\left( \sin \dfrac{\pi }{7} \right)}^{2}}$ we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\times {{\left( \dfrac{1}{4} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{64} \\
\end{align}\]
Therefore, B is the correct answer.
Note: Although the question is solely based on identities and manipulation, if anywhere, we use the wrong positive or negative sign in the identities formula then, we will get the wrong answer. For avoiding such a mistake, we have one table which describes sign representation.
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \\
& \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta \\
& \sin \left( \pi -\theta \right)=\sin \theta \\
& \sin \left( \pi +\theta \right)=-\sin \theta \\
\end{align}\]
\[\begin{align}
& \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cos \left( \dfrac{\pi }{2}+\theta \right)=-\sin \theta \\
& \cos \left( \pi -\theta \right)=-\cos \theta \\
& \cos \left( \pi +\theta \right)=-\cos \theta \\
\end{align}\]
Firstly, we will convert the last three terms of the given question according to the first three terms. The middle term becomes 1 $\left( \because \sin \dfrac{7\pi }{14}=\sin \dfrac{\pi }{2}=1 \right)$
Therefore, after combining the all terms and manipulating the values according to above 8 fundamental formulas, we get the constant answer.
Complete step-by-step solution:
Let’s jump to the question, we have:
\[A=\left( \sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\sin \dfrac{7\pi }{14}\sin \dfrac{9\pi }{14}\sin \dfrac{11\pi }{14}\sin \dfrac{13\pi }{14} \right)\cdots \cdots \cdots (i)\]
Here, considering the middle term and expressing its value, we have \[\sin \dfrac{7\pi }{14}=\sin \dfrac{\pi }{2}=1\]
Now, let us take the term $\sin \dfrac{9\pi }{14}$ can be written as $\sin \left( \dfrac{14\pi -5\pi }{14} \right)$
\[\begin{align}
& \therefore \sin \left( \dfrac{14\pi }{14}-\dfrac{5\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{5\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{5\pi }{14} \right)\left( \because \sin \left( \pi -\theta \right)=\sin \theta \right) \\
\end{align}\]
Similarly, for the term $\sin \dfrac{11\pi }{14}$ we can write it as $\sin \left( \dfrac{14\pi -3\pi }{14} \right)$
Now, applying identities and simplifying, we have
\[\begin{align}
& \therefore \sin \dfrac{11\pi }{14}=\sin \left( \dfrac{14\pi -3\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{3\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{3\pi }{14} \right) \\
\end{align}\]
And now, let us do the same for next term,
\[\begin{align}
& \sin \dfrac{13\pi }{14}=\sin \left( \dfrac{14\pi -\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{14} \right) \\
\end{align}\]
Now, from equation (i) we have,
\[\begin{align}
& A=\left( \sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\times \left( 1 \right)\times \dfrac{5\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{\pi }{14} \right) \\
& A={{\left( \sin \dfrac{\pi }{14}\cdot \sin \dfrac{3\pi }{14}\cdot \sin \dfrac{5\pi }{14} \right)}^{2}} \\
\end{align}\]
Now, for the next term, we have
\[\begin{align}
& \sin \dfrac{\pi }{14}=\sin \left( \dfrac{7\pi -6\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{3\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{3\pi }{7} \right)\left( \because \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \right) \\
\end{align}\]
Similarly, we can also simplify the below term as
\[\begin{align}
& \sin \dfrac{3\pi }{14}=\sin \left( \dfrac{7\pi -4\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{2\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{2\pi }{7} \right) \\
\end{align}\]
And now we have
\[\begin{align}
& \sin \dfrac{5\pi }{14}=\sin \left( \dfrac{7\pi -2\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{\pi }{7} \right) \\
\end{align}\]
Hence, combining all the results obtained above, we can write the expression as \[A={{\left( \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}}\]
Now, we will multiply and divide above expression with $\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)$ therefore, we get:
\[\begin{align}
& A=\dfrac{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}} \\
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( 2\sin \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}} \\
\end{align}\]
We know, \[\Rightarrow 2\sin \theta \cos \theta =\sin 2\theta \]
Hence, \[2\sin \dfrac{\pi }{7}\cdot \cos \dfrac{\pi }{7}=\left( \sin \dfrac{2\pi }{7} \right)\]
Now, substituting this in the expression, we have
\[\begin{align}
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right)}^{2}} \\
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{2}{2}\cdot \sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right)}^{2}} \\
\end{align}\]
Now, multiply and divide by 2 inside the bracket.
\[\begin{align}
& \therefore 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}=\sin \dfrac{4\pi }{7} \\
& \text{And} \\
& \text{cos}\dfrac{3\pi }{7}=\cos \left( \dfrac{7\pi -4\pi }{7} \right) \\
& \Rightarrow \cos \left( \pi -\dfrac{4\pi }{7} \right)= - \cos \dfrac{4\pi }{7}\left( \because \cos \left( \pi -\theta \right)=-\cos \theta \right) \\
\end{align}\]
\[\begin{align}
& \therefore A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{1}{2}\times \sin \dfrac{4\pi }{7}\cdot \left( -\cos \dfrac{4\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{2\times 2}\times 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{4\pi }{7} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{4}\times \sin \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{4}\times \sin \left( \dfrac{7\pi +\pi }{7} \right) \right)}^{2}} \\
\end{align}\]
We know, \[\sin \left( \pi +\theta \right)=-\sin \theta \]
\[\begin{align}
& \therefore \sin \left( \dfrac{7\pi +\pi }{7} \right)=\sin \left( \pi +\dfrac{\pi }{7} \right)=-\sin \left( \dfrac{\pi }{7} \right) \\
& A=\dfrac{1}{4{{\sin }^{2}}\dfrac{\pi }{7}}{{\left( \dfrac{-1}{4}\times \left( -\sin \dfrac{\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow \dfrac{1}{4{{\sin }^{2}}\dfrac{\pi }{7}}{{\left( \dfrac{1}{4} \right)}^{2}}{{\left( \sin \dfrac{\pi }{7} \right)}^{2}} \\
\end{align}\]
Cancelling ${{\left( \sin \dfrac{\pi }{7} \right)}^{2}}$ we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\times {{\left( \dfrac{1}{4} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{64} \\
\end{align}\]
Therefore, B is the correct answer.
Note: Although the question is solely based on identities and manipulation, if anywhere, we use the wrong positive or negative sign in the identities formula then, we will get the wrong answer. For avoiding such a mistake, we have one table which describes sign representation.

Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
