
The value of $\sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\sin \dfrac{7\pi }{14}\sin \dfrac{9\pi }{14}\sin \dfrac{11\pi }{14}\sin \dfrac{13\pi }{14}$ is
\[\begin{align}
& A.\dfrac{1}{16} \\
& B.\dfrac{1}{64} \\
& C.\dfrac{1}{128} \\
& D.\dfrac{1}{32} \\
\end{align}\]
Answer
573.6k+ views
Hint: Here, we apply the concept of trigonometric ratios and identities. Some important trigonometric identities for angles used in this particular question are:
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \\
& \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta \\
& \sin \left( \pi -\theta \right)=\sin \theta \\
& \sin \left( \pi +\theta \right)=-\sin \theta \\
\end{align}\]
\[\begin{align}
& \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cos \left( \dfrac{\pi }{2}+\theta \right)=-\sin \theta \\
& \cos \left( \pi -\theta \right)=-\cos \theta \\
& \cos \left( \pi +\theta \right)=-\cos \theta \\
\end{align}\]
Firstly, we will convert the last three terms of the given question according to the first three terms. The middle term becomes 1 $\left( \because \sin \dfrac{7\pi }{14}=\sin \dfrac{\pi }{2}=1 \right)$
Therefore, after combining the all terms and manipulating the values according to above 8 fundamental formulas, we get the constant answer.
Complete step-by-step solution:
Let’s jump to the question, we have:
\[A=\left( \sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\sin \dfrac{7\pi }{14}\sin \dfrac{9\pi }{14}\sin \dfrac{11\pi }{14}\sin \dfrac{13\pi }{14} \right)\cdots \cdots \cdots (i)\]
Here, considering the middle term and expressing its value, we have \[\sin \dfrac{7\pi }{14}=\sin \dfrac{\pi }{2}=1\]
Now, let us take the term $\sin \dfrac{9\pi }{14}$ can be written as $\sin \left( \dfrac{14\pi -5\pi }{14} \right)$
\[\begin{align}
& \therefore \sin \left( \dfrac{14\pi }{14}-\dfrac{5\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{5\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{5\pi }{14} \right)\left( \because \sin \left( \pi -\theta \right)=\sin \theta \right) \\
\end{align}\]
Similarly, for the term $\sin \dfrac{11\pi }{14}$ we can write it as $\sin \left( \dfrac{14\pi -3\pi }{14} \right)$
Now, applying identities and simplifying, we have
\[\begin{align}
& \therefore \sin \dfrac{11\pi }{14}=\sin \left( \dfrac{14\pi -3\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{3\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{3\pi }{14} \right) \\
\end{align}\]
And now, let us do the same for next term,
\[\begin{align}
& \sin \dfrac{13\pi }{14}=\sin \left( \dfrac{14\pi -\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{14} \right) \\
\end{align}\]
Now, from equation (i) we have,
\[\begin{align}
& A=\left( \sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\times \left( 1 \right)\times \dfrac{5\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{\pi }{14} \right) \\
& A={{\left( \sin \dfrac{\pi }{14}\cdot \sin \dfrac{3\pi }{14}\cdot \sin \dfrac{5\pi }{14} \right)}^{2}} \\
\end{align}\]
Now, for the next term, we have
\[\begin{align}
& \sin \dfrac{\pi }{14}=\sin \left( \dfrac{7\pi -6\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{3\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{3\pi }{7} \right)\left( \because \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \right) \\
\end{align}\]
Similarly, we can also simplify the below term as
\[\begin{align}
& \sin \dfrac{3\pi }{14}=\sin \left( \dfrac{7\pi -4\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{2\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{2\pi }{7} \right) \\
\end{align}\]
And now we have
\[\begin{align}
& \sin \dfrac{5\pi }{14}=\sin \left( \dfrac{7\pi -2\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{\pi }{7} \right) \\
\end{align}\]
Hence, combining all the results obtained above, we can write the expression as \[A={{\left( \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}}\]
Now, we will multiply and divide above expression with $\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)$ therefore, we get:
\[\begin{align}
& A=\dfrac{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}} \\
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( 2\sin \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}} \\
\end{align}\]
We know, \[\Rightarrow 2\sin \theta \cos \theta =\sin 2\theta \]
Hence, \[2\sin \dfrac{\pi }{7}\cdot \cos \dfrac{\pi }{7}=\left( \sin \dfrac{2\pi }{7} \right)\]
Now, substituting this in the expression, we have
\[\begin{align}
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right)}^{2}} \\
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{2}{2}\cdot \sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right)}^{2}} \\
\end{align}\]
Now, multiply and divide by 2 inside the bracket.
\[\begin{align}
& \therefore 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}=\sin \dfrac{4\pi }{7} \\
& \text{And} \\
& \text{cos}\dfrac{3\pi }{7}=\cos \left( \dfrac{7\pi -4\pi }{7} \right) \\
& \Rightarrow \cos \left( \pi -\dfrac{4\pi }{7} \right)= - \cos \dfrac{4\pi }{7}\left( \because \cos \left( \pi -\theta \right)=-\cos \theta \right) \\
\end{align}\]
\[\begin{align}
& \therefore A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{1}{2}\times \sin \dfrac{4\pi }{7}\cdot \left( -\cos \dfrac{4\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{2\times 2}\times 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{4\pi }{7} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{4}\times \sin \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{4}\times \sin \left( \dfrac{7\pi +\pi }{7} \right) \right)}^{2}} \\
\end{align}\]
We know, \[\sin \left( \pi +\theta \right)=-\sin \theta \]
\[\begin{align}
& \therefore \sin \left( \dfrac{7\pi +\pi }{7} \right)=\sin \left( \pi +\dfrac{\pi }{7} \right)=-\sin \left( \dfrac{\pi }{7} \right) \\
& A=\dfrac{1}{4{{\sin }^{2}}\dfrac{\pi }{7}}{{\left( \dfrac{-1}{4}\times \left( -\sin \dfrac{\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow \dfrac{1}{4{{\sin }^{2}}\dfrac{\pi }{7}}{{\left( \dfrac{1}{4} \right)}^{2}}{{\left( \sin \dfrac{\pi }{7} \right)}^{2}} \\
\end{align}\]
Cancelling ${{\left( \sin \dfrac{\pi }{7} \right)}^{2}}$ we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\times {{\left( \dfrac{1}{4} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{64} \\
\end{align}\]
Therefore, B is the correct answer.
Note: Although the question is solely based on identities and manipulation, if anywhere, we use the wrong positive or negative sign in the identities formula then, we will get the wrong answer. For avoiding such a mistake, we have one table which describes sign representation.
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \\
& \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta \\
& \sin \left( \pi -\theta \right)=\sin \theta \\
& \sin \left( \pi +\theta \right)=-\sin \theta \\
\end{align}\]
\[\begin{align}
& \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cos \left( \dfrac{\pi }{2}+\theta \right)=-\sin \theta \\
& \cos \left( \pi -\theta \right)=-\cos \theta \\
& \cos \left( \pi +\theta \right)=-\cos \theta \\
\end{align}\]
Firstly, we will convert the last three terms of the given question according to the first three terms. The middle term becomes 1 $\left( \because \sin \dfrac{7\pi }{14}=\sin \dfrac{\pi }{2}=1 \right)$
Therefore, after combining the all terms and manipulating the values according to above 8 fundamental formulas, we get the constant answer.
Complete step-by-step solution:
Let’s jump to the question, we have:
\[A=\left( \sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\sin \dfrac{7\pi }{14}\sin \dfrac{9\pi }{14}\sin \dfrac{11\pi }{14}\sin \dfrac{13\pi }{14} \right)\cdots \cdots \cdots (i)\]
Here, considering the middle term and expressing its value, we have \[\sin \dfrac{7\pi }{14}=\sin \dfrac{\pi }{2}=1\]
Now, let us take the term $\sin \dfrac{9\pi }{14}$ can be written as $\sin \left( \dfrac{14\pi -5\pi }{14} \right)$
\[\begin{align}
& \therefore \sin \left( \dfrac{14\pi }{14}-\dfrac{5\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{5\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{5\pi }{14} \right)\left( \because \sin \left( \pi -\theta \right)=\sin \theta \right) \\
\end{align}\]
Similarly, for the term $\sin \dfrac{11\pi }{14}$ we can write it as $\sin \left( \dfrac{14\pi -3\pi }{14} \right)$
Now, applying identities and simplifying, we have
\[\begin{align}
& \therefore \sin \dfrac{11\pi }{14}=\sin \left( \dfrac{14\pi -3\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{3\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{3\pi }{14} \right) \\
\end{align}\]
And now, let us do the same for next term,
\[\begin{align}
& \sin \dfrac{13\pi }{14}=\sin \left( \dfrac{14\pi -\pi }{14} \right) \\
& \Rightarrow \sin \left( \pi -\dfrac{\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{14} \right) \\
\end{align}\]
Now, from equation (i) we have,
\[\begin{align}
& A=\left( \sin \dfrac{\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{5\pi }{14}\times \left( 1 \right)\times \dfrac{5\pi }{14}\sin \dfrac{3\pi }{14}\sin \dfrac{\pi }{14} \right) \\
& A={{\left( \sin \dfrac{\pi }{14}\cdot \sin \dfrac{3\pi }{14}\cdot \sin \dfrac{5\pi }{14} \right)}^{2}} \\
\end{align}\]
Now, for the next term, we have
\[\begin{align}
& \sin \dfrac{\pi }{14}=\sin \left( \dfrac{7\pi -6\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{3\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{3\pi }{7} \right)\left( \because \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta \right) \\
\end{align}\]
Similarly, we can also simplify the below term as
\[\begin{align}
& \sin \dfrac{3\pi }{14}=\sin \left( \dfrac{7\pi -4\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{2\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{2\pi }{7} \right) \\
\end{align}\]
And now we have
\[\begin{align}
& \sin \dfrac{5\pi }{14}=\sin \left( \dfrac{7\pi -2\pi }{14} \right) \\
& \Rightarrow \sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{7} \right) \\
& \Rightarrow \cos \left( \dfrac{\pi }{7} \right) \\
\end{align}\]
Hence, combining all the results obtained above, we can write the expression as \[A={{\left( \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}}\]
Now, we will multiply and divide above expression with $\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)$ therefore, we get:
\[\begin{align}
& A=\dfrac{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}} \\
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( 2\sin \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{\pi }{7} \right)}^{2}} \\
\end{align}\]
We know, \[\Rightarrow 2\sin \theta \cos \theta =\sin 2\theta \]
Hence, \[2\sin \dfrac{\pi }{7}\cdot \cos \dfrac{\pi }{7}=\left( \sin \dfrac{2\pi }{7} \right)\]
Now, substituting this in the expression, we have
\[\begin{align}
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right)}^{2}} \\
& A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{2}{2}\cdot \sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right)}^{2}} \\
\end{align}\]
Now, multiply and divide by 2 inside the bracket.
\[\begin{align}
& \therefore 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7}=\sin \dfrac{4\pi }{7} \\
& \text{And} \\
& \text{cos}\dfrac{3\pi }{7}=\cos \left( \dfrac{7\pi -4\pi }{7} \right) \\
& \Rightarrow \cos \left( \pi -\dfrac{4\pi }{7} \right)= - \cos \dfrac{4\pi }{7}\left( \because \cos \left( \pi -\theta \right)=-\cos \theta \right) \\
\end{align}\]
\[\begin{align}
& \therefore A=\dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{1}{2}\times \sin \dfrac{4\pi }{7}\cdot \left( -\cos \dfrac{4\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{2\times 2}\times 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{4\pi }{7} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{4}\times \sin \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{\left( 4{{\sin }^{2}}\dfrac{\pi }{7} \right)}{{\left( \dfrac{-1}{4}\times \sin \left( \dfrac{7\pi +\pi }{7} \right) \right)}^{2}} \\
\end{align}\]
We know, \[\sin \left( \pi +\theta \right)=-\sin \theta \]
\[\begin{align}
& \therefore \sin \left( \dfrac{7\pi +\pi }{7} \right)=\sin \left( \pi +\dfrac{\pi }{7} \right)=-\sin \left( \dfrac{\pi }{7} \right) \\
& A=\dfrac{1}{4{{\sin }^{2}}\dfrac{\pi }{7}}{{\left( \dfrac{-1}{4}\times \left( -\sin \dfrac{\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow \dfrac{1}{4{{\sin }^{2}}\dfrac{\pi }{7}}{{\left( \dfrac{1}{4} \right)}^{2}}{{\left( \sin \dfrac{\pi }{7} \right)}^{2}} \\
\end{align}\]
Cancelling ${{\left( \sin \dfrac{\pi }{7} \right)}^{2}}$ we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{4}\times {{\left( \dfrac{1}{4} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{64} \\
\end{align}\]
Therefore, B is the correct answer.
Note: Although the question is solely based on identities and manipulation, if anywhere, we use the wrong positive or negative sign in the identities formula then, we will get the wrong answer. For avoiding such a mistake, we have one table which describes sign representation.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

