
The value of \[\sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ \]
( A )\[\dfrac{1}{2}\]
( B ) \[ - \dfrac{1}{2}\]
( C ) -1
( D ) none of these
Answer
556.8k+ views
Hint: To solve this kind of questions we are going to use the following procedure given
below so that we can make our question solving process as simple as possible and that will be helpful to save our valuable time.
\[\sin x - \sin y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)\]
After it put the value of sin or cos with angle
Complete step-by-step answer:
We are given the following trigonometric expression : \[\sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ \]
\[
\Rightarrow \sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ = (\sin 78^\circ - \sin 42^\circ ) + (\sin 6^\circ - \sin 66^\circ ) \\
\;\;\;\; = (\sin (60^\circ + 18^\circ ) - \sin (60^\circ - 18^\circ )) + (\sin 6^\circ - \sin (60^\circ + 6^\circ )) \;
\]
Apply the above formula
\[
\sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ = 2\cos \left( {\dfrac{{60^\circ + 18^\circ + 60^\circ - 18^\circ }}{2}} \right)\sin \left( {\dfrac{{60^\circ + 18^\circ - 60^\circ + 18^\circ }}{2}} \right) + 2\cos \left( {\dfrac{{6^\circ + 60^\circ + 6^\circ }}{2}} \right)\sin \left( {\dfrac{{6^\circ - 60^\circ - 6^\circ }}{2}} \right) \\
= 2\cos \left( {60^\circ } \right)\sin \left( {18^\circ } \right) + 2\cos \left( {36^\circ } \right)\sin ( - 30^\circ ) \\
= 2.\dfrac{1}{2}\sin \left( {18^\circ } \right) - 2.\dfrac{1}{2}\cos \left( {36^\circ } \right) \\
= \sin \left( {18^\circ } \right) - \cos \left( {36^\circ } \right) \\
\]Substitute the value of $ \sin \left( {18^\circ } \right) $ and $ \cos \left( {36^\circ } \right) $ in the above equation.
\[
\Rightarrow \sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ = \sin \left( {18^\circ } \right) - \cos \left( {36^\circ } \right) \\
= \dfrac{{\sqrt 5 - 1}}{4} - \dfrac{{\sqrt 5 + 1}}{4} \\
= \dfrac{{\sqrt 5 - 1 - \sqrt 5 - 1}}{4} \\
= \dfrac{{ - 2}}{4} \\
= - \dfrac{1}{2} \\
\]
So, the correct answer is “Option B”.
Note: In this type of question we need to take care of the many things and some of them are mentioned here which will be really helpful to understand the concept:
We need to use correct formula in such a way that solution does not become too complex
Apply the formula \[\sin x - \sin y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)\] carefully.
Value of $ \sin \left( {18^\circ } \right) $ and $ \cos \left( {36^\circ } \right) $ should be correct to get the right answer without any kind of error.
below so that we can make our question solving process as simple as possible and that will be helpful to save our valuable time.
\[\sin x - \sin y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)\]
After it put the value of sin or cos with angle
Complete step-by-step answer:
We are given the following trigonometric expression : \[\sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ \]
\[
\Rightarrow \sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ = (\sin 78^\circ - \sin 42^\circ ) + (\sin 6^\circ - \sin 66^\circ ) \\
\;\;\;\; = (\sin (60^\circ + 18^\circ ) - \sin (60^\circ - 18^\circ )) + (\sin 6^\circ - \sin (60^\circ + 6^\circ )) \;
\]
Apply the above formula
\[
\sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ = 2\cos \left( {\dfrac{{60^\circ + 18^\circ + 60^\circ - 18^\circ }}{2}} \right)\sin \left( {\dfrac{{60^\circ + 18^\circ - 60^\circ + 18^\circ }}{2}} \right) + 2\cos \left( {\dfrac{{6^\circ + 60^\circ + 6^\circ }}{2}} \right)\sin \left( {\dfrac{{6^\circ - 60^\circ - 6^\circ }}{2}} \right) \\
= 2\cos \left( {60^\circ } \right)\sin \left( {18^\circ } \right) + 2\cos \left( {36^\circ } \right)\sin ( - 30^\circ ) \\
= 2.\dfrac{1}{2}\sin \left( {18^\circ } \right) - 2.\dfrac{1}{2}\cos \left( {36^\circ } \right) \\
= \sin \left( {18^\circ } \right) - \cos \left( {36^\circ } \right) \\
\]Substitute the value of $ \sin \left( {18^\circ } \right) $ and $ \cos \left( {36^\circ } \right) $ in the above equation.
\[
\Rightarrow \sin 78^\circ - \sin 66^\circ - \sin 42^\circ + \sin 6^\circ = \sin \left( {18^\circ } \right) - \cos \left( {36^\circ } \right) \\
= \dfrac{{\sqrt 5 - 1}}{4} - \dfrac{{\sqrt 5 + 1}}{4} \\
= \dfrac{{\sqrt 5 - 1 - \sqrt 5 - 1}}{4} \\
= \dfrac{{ - 2}}{4} \\
= - \dfrac{1}{2} \\
\]
So, the correct answer is “Option B”.
Note: In this type of question we need to take care of the many things and some of them are mentioned here which will be really helpful to understand the concept:
We need to use correct formula in such a way that solution does not become too complex
Apply the formula \[\sin x - \sin y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)\] carefully.
Value of $ \sin \left( {18^\circ } \right) $ and $ \cos \left( {36^\circ } \right) $ should be correct to get the right answer without any kind of error.
Recently Updated Pages
Write the expression for torque in vector form class 11 physics CBSE

Metal such as lead copper silver and gold do not react class 11 chemistry CBSE

Differentiate between root apex and shoot apex class 11 biology CBSE

The hybridisation of IO2F2 with geometry is A sp3d2 class 11 chemistry CBSE

How do you name cycloalkanes with double bonds class 11 chemistry CBSE

If the midpoint of the line segment joining the points class 11 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

