
The value of $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$ is equal to –
(a) 0
(b) 1
(c) -2
(d) None of these
Answer
520.2k+ views
Hint: To solve this problem, we will start by using the below algebraic identities –
${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab$
${{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)$
The trigonometric identity in concern to be used in this problem is ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. We will use these properties in combination to solve the problem in hand.
Complete step-by-step answer:
To solve this problem, we will first consider the first term of the expression$({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, thus, we have,
= $({{\sin }^{6}}x+{{\cos }^{6}}x)$
Using the algebraic identity ${{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)$, we have,
= ${{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{3}}-3{{\sin }^{2}}x\,{{\cos }^{2}}x ({{\sin }^{2}}x+{{\cos }^{2}}x)$
Since, ${{({{\sin }^{6}}x)}^{\dfrac{1}{3}}}={{\sin }^{2}}x$.
Now, we use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, thus, we have,
= 1 - $3{{\sin }^{2}}x\,{{\cos }^{2}}x$ -- (1)
Now, we consider the second term of the expression$({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, thus, we have,
= $3({{\sin }^{4}}x+{{\cos }^{4}}x)$
Using the algebraic identity ${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab$, we have,
= $3[{{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x\,{{\cos }^{2}}x]$
Since, ${{({{\sin }^{4}}x)}^{\dfrac{1}{2}}}={{\sin }^{2}}x$.
Now, we use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, thus, we have,
= 3[1 - $2{{\sin }^{2}}x\,{{\cos }^{2}}x$] -- (2)
Now, we combine the values obtained from (1) and (2) in the final expression. Thus, we have,
= $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$
= 1 - $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ - 3[1 - $2{{\sin }^{2}}x\, {{\cos }^{2}}x$] + 1
= 1 - $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ - 3 + $6{{\sin }^{2}}x\, {{\cos }^{2}}x$ + 1
= -1 + $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ -- (A)
Hence, the expression can have different values depending on the value of x. To explain if x = 90 degrees, the answer would be -1, whereas if x = 45 degrees, the answer would be -0.25. Hence, in short, the answer would be represented by the trigonometric expression given in the final result (A). Thus, the correct answer is (d) None of these.
Note: While solving problems related to trigonometric expressions involving multi correct options, we can actually put different values of x in the expression and find the answer. To explain, let’s first put x = 0 degrees in $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, we get answer as 1 – 3 + 1 = -1. Now, we put, x = 45 degrees in $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, we get $\left( {{\left( \dfrac{1}{\sqrt{2}} \right)}^{6}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{6}} \right)-3\left( {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}} \right)+1$ = $\dfrac{1}{4}-3\left( \dfrac{1}{2} \right)+1$ = $-\dfrac{1}{4}$. Thus, we get two different answers for different values of x, thus the trigonometric expression is dependent on x, thus, since all the options are constant, the answer has to be none of these.
${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab$
${{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)$
The trigonometric identity in concern to be used in this problem is ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. We will use these properties in combination to solve the problem in hand.
Complete step-by-step answer:
To solve this problem, we will first consider the first term of the expression$({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, thus, we have,
= $({{\sin }^{6}}x+{{\cos }^{6}}x)$
Using the algebraic identity ${{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)$, we have,
= ${{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{3}}-3{{\sin }^{2}}x\,{{\cos }^{2}}x ({{\sin }^{2}}x+{{\cos }^{2}}x)$
Since, ${{({{\sin }^{6}}x)}^{\dfrac{1}{3}}}={{\sin }^{2}}x$.
Now, we use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, thus, we have,
= 1 - $3{{\sin }^{2}}x\,{{\cos }^{2}}x$ -- (1)
Now, we consider the second term of the expression$({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, thus, we have,
= $3({{\sin }^{4}}x+{{\cos }^{4}}x)$
Using the algebraic identity ${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab$, we have,
= $3[{{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x\,{{\cos }^{2}}x]$
Since, ${{({{\sin }^{4}}x)}^{\dfrac{1}{2}}}={{\sin }^{2}}x$.
Now, we use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, thus, we have,
= 3[1 - $2{{\sin }^{2}}x\,{{\cos }^{2}}x$] -- (2)
Now, we combine the values obtained from (1) and (2) in the final expression. Thus, we have,
= $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$
= 1 - $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ - 3[1 - $2{{\sin }^{2}}x\, {{\cos }^{2}}x$] + 1
= 1 - $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ - 3 + $6{{\sin }^{2}}x\, {{\cos }^{2}}x$ + 1
= -1 + $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ -- (A)
Hence, the expression can have different values depending on the value of x. To explain if x = 90 degrees, the answer would be -1, whereas if x = 45 degrees, the answer would be -0.25. Hence, in short, the answer would be represented by the trigonometric expression given in the final result (A). Thus, the correct answer is (d) None of these.
Note: While solving problems related to trigonometric expressions involving multi correct options, we can actually put different values of x in the expression and find the answer. To explain, let’s first put x = 0 degrees in $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, we get answer as 1 – 3 + 1 = -1. Now, we put, x = 45 degrees in $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, we get $\left( {{\left( \dfrac{1}{\sqrt{2}} \right)}^{6}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{6}} \right)-3\left( {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}} \right)+1$ = $\dfrac{1}{4}-3\left( \dfrac{1}{2} \right)+1$ = $-\dfrac{1}{4}$. Thus, we get two different answers for different values of x, thus the trigonometric expression is dependent on x, thus, since all the options are constant, the answer has to be none of these.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
