
The value of $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$ is equal to –
(a) 0
(b) 1
(c) -2
(d) None of these
Answer
603.3k+ views
Hint: To solve this problem, we will start by using the below algebraic identities –
${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab$
${{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)$
The trigonometric identity in concern to be used in this problem is ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. We will use these properties in combination to solve the problem in hand.
Complete step-by-step answer:
To solve this problem, we will first consider the first term of the expression$({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, thus, we have,
= $({{\sin }^{6}}x+{{\cos }^{6}}x)$
Using the algebraic identity ${{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)$, we have,
= ${{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{3}}-3{{\sin }^{2}}x\,{{\cos }^{2}}x ({{\sin }^{2}}x+{{\cos }^{2}}x)$
Since, ${{({{\sin }^{6}}x)}^{\dfrac{1}{3}}}={{\sin }^{2}}x$.
Now, we use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, thus, we have,
= 1 - $3{{\sin }^{2}}x\,{{\cos }^{2}}x$ -- (1)
Now, we consider the second term of the expression$({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, thus, we have,
= $3({{\sin }^{4}}x+{{\cos }^{4}}x)$
Using the algebraic identity ${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab$, we have,
= $3[{{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x\,{{\cos }^{2}}x]$
Since, ${{({{\sin }^{4}}x)}^{\dfrac{1}{2}}}={{\sin }^{2}}x$.
Now, we use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, thus, we have,
= 3[1 - $2{{\sin }^{2}}x\,{{\cos }^{2}}x$] -- (2)
Now, we combine the values obtained from (1) and (2) in the final expression. Thus, we have,
= $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$
= 1 - $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ - 3[1 - $2{{\sin }^{2}}x\, {{\cos }^{2}}x$] + 1
= 1 - $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ - 3 + $6{{\sin }^{2}}x\, {{\cos }^{2}}x$ + 1
= -1 + $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ -- (A)
Hence, the expression can have different values depending on the value of x. To explain if x = 90 degrees, the answer would be -1, whereas if x = 45 degrees, the answer would be -0.25. Hence, in short, the answer would be represented by the trigonometric expression given in the final result (A). Thus, the correct answer is (d) None of these.
Note: While solving problems related to trigonometric expressions involving multi correct options, we can actually put different values of x in the expression and find the answer. To explain, let’s first put x = 0 degrees in $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, we get answer as 1 – 3 + 1 = -1. Now, we put, x = 45 degrees in $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, we get $\left( {{\left( \dfrac{1}{\sqrt{2}} \right)}^{6}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{6}} \right)-3\left( {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}} \right)+1$ = $\dfrac{1}{4}-3\left( \dfrac{1}{2} \right)+1$ = $-\dfrac{1}{4}$. Thus, we get two different answers for different values of x, thus the trigonometric expression is dependent on x, thus, since all the options are constant, the answer has to be none of these.
${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab$
${{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)$
The trigonometric identity in concern to be used in this problem is ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. We will use these properties in combination to solve the problem in hand.
Complete step-by-step answer:
To solve this problem, we will first consider the first term of the expression$({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, thus, we have,
= $({{\sin }^{6}}x+{{\cos }^{6}}x)$
Using the algebraic identity ${{a}^{3}}+{{b}^{3}}={{(a+b)}^{3}}-3ab(a+b)$, we have,
= ${{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{3}}-3{{\sin }^{2}}x\,{{\cos }^{2}}x ({{\sin }^{2}}x+{{\cos }^{2}}x)$
Since, ${{({{\sin }^{6}}x)}^{\dfrac{1}{3}}}={{\sin }^{2}}x$.
Now, we use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, thus, we have,
= 1 - $3{{\sin }^{2}}x\,{{\cos }^{2}}x$ -- (1)
Now, we consider the second term of the expression$({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, thus, we have,
= $3({{\sin }^{4}}x+{{\cos }^{4}}x)$
Using the algebraic identity ${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab$, we have,
= $3[{{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x\,{{\cos }^{2}}x]$
Since, ${{({{\sin }^{4}}x)}^{\dfrac{1}{2}}}={{\sin }^{2}}x$.
Now, we use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, thus, we have,
= 3[1 - $2{{\sin }^{2}}x\,{{\cos }^{2}}x$] -- (2)
Now, we combine the values obtained from (1) and (2) in the final expression. Thus, we have,
= $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$
= 1 - $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ - 3[1 - $2{{\sin }^{2}}x\, {{\cos }^{2}}x$] + 1
= 1 - $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ - 3 + $6{{\sin }^{2}}x\, {{\cos }^{2}}x$ + 1
= -1 + $3{{\sin }^{2}}x\, {{\cos }^{2}}x$ -- (A)
Hence, the expression can have different values depending on the value of x. To explain if x = 90 degrees, the answer would be -1, whereas if x = 45 degrees, the answer would be -0.25. Hence, in short, the answer would be represented by the trigonometric expression given in the final result (A). Thus, the correct answer is (d) None of these.
Note: While solving problems related to trigonometric expressions involving multi correct options, we can actually put different values of x in the expression and find the answer. To explain, let’s first put x = 0 degrees in $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, we get answer as 1 – 3 + 1 = -1. Now, we put, x = 45 degrees in $({{\sin }^{6}}x+{{\cos }^{6}}x)-3({{\sin }^{4}}x+{{\cos }^{4}}x)+1$, we get $\left( {{\left( \dfrac{1}{\sqrt{2}} \right)}^{6}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{6}} \right)-3\left( {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}} \right)+1$ = $\dfrac{1}{4}-3\left( \dfrac{1}{2} \right)+1$ = $-\dfrac{1}{4}$. Thus, we get two different answers for different values of x, thus the trigonometric expression is dependent on x, thus, since all the options are constant, the answer has to be none of these.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

