
The value of \[\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }\]is:
(a) \[\dfrac{1}{4}\]
(b) \[\dfrac{1}{6}\]
(c) \[\dfrac{3}{4}\]
(d) \[\dfrac{5}{{16}}\]
Answer
564.9k+ views
Hint:
Trigonometric formulae that will be helpful in solving such questions:
1) \[2\sin A \times \sin B = \cos (A - B) - \cos (A + B)\]
2) \[\sin ( - \theta ) = - \sin (\theta )\]
3) \[\cos ( - \theta ) = \cos (\theta )\]
Complete step by step solution:
Given: \[\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }\]
\[
\Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {(180 - 72)^ \circ }\sin {(180 - 36)^ \circ } \\
\Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {72^ \circ }\sin {36^ \circ }......\left( {\because \sin ({{180}^ \circ } - \theta ) = \sin \theta } \right) \\
\Rightarrow {\left( {\sin {{36}^ \circ }} \right)^2}{\left( {\sin {{72}^ \circ }} \right)^2} \\
\Rightarrow {\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)^2} \\
\]
Multiplying and dividing by 2 we get;
\[
\Rightarrow \dfrac{1}{4}\left\{ {{{\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)}^2}} \right\} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{(72 - 36)}^ \circ } - \cos {{(72 + 36)}^ \circ }} \right)^2}......\left\{ {Using{\text{ }}2\sin A \times \sin B = \cos (A - B) - \cos (A + B)} \right\} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\cos {{36}^ \circ } - \cos {{(90 + 18)}^ \circ }} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\cos {{36}^ \circ } + \sin {{18}^ \circ }} \right\}^2}....................Eq:01 \\
\]
Now, let us find the value of \[\sin {18^ \circ }\].
Let, \[\theta = {18^ \circ }\]
Multiplying both sides by 5 we get;
\[
\Rightarrow 5\theta = {90^ \circ } \\
\Rightarrow 2\theta + 3\theta = {90^ \circ } \\
\Rightarrow 2\theta = {90^ \circ } - 3\theta \\
\]
On applying \[\sin \theta \]both sides,
\[
\Rightarrow \sin (2\theta ) = \sin ({90^ \circ } - 3\theta ) \\
\Rightarrow \sin (2\theta ) = \operatorname{co} (3\theta )......\because \left( {\sin ({{90}^ \circ } - \theta ) = \cos \theta } \right) \\
\Rightarrow 2\sin \theta \cos \theta = 4{\cos ^3}\theta - 3\cos \theta \\
\Rightarrow 2\sin \theta = 4{\cos ^2}\theta - 3 \\
\Rightarrow 2\sin \theta = 4\left( {1 - {{\sin }^2}\theta } \right) - 3 \\
\Rightarrow 4{\sin ^2}\theta + 2\sin \theta - 1 = 0 \\
\]
Put (x) in place of \[\sin \theta \],
\[ \Rightarrow 4{x^2} + 2x - 1 = 0\]
Using discriminant formula, solve the above quadratic equation;
\[
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{{(2)}^2} - 4(4)( - 1)} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {20} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm 2\sqrt 5 }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ \pm \sqrt 5 - 1}}{4} \\
\]
Putting back the value of x and \[\theta \]in above equation,
\[ \Rightarrow \sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}......\because \left[ {{{18}^ \circ }\;lie{\text{ }}in{\text{ }}first{\text{ }}quadrant{\text{ }}so{\text{ }}it{\text{ }}must{\text{ }}be{\text{ }}positive} \right]\]
Similarly, the value of \[\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}\].
Putting back the values of \[\sin {18^ \circ }\]and \[\cos {36^ \circ }\]in Eq:01,
\[
\Rightarrow \dfrac{1}{4}{\left\{ {\dfrac{{\sqrt 5 + 1}}{4} + \dfrac{{\sqrt 5 - 1}}{4}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {2\dfrac{{\sqrt 5 }}{4}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\dfrac{{\sqrt 5 }}{2}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) = \dfrac{5}{{16}} \\
\]
Our required value is \[\dfrac{5}{{16}}\].
Option (D) is correct.
Note:
Quadrant plays an important role in trigonometric questions. In quadrant 1st all trigonometric ratios are positive, in 2nd quadrant only sin and cosec trigonometric ratios are positive rest negative, in 3rd quadrant only tan and cot trigonometric ratios are positive test negative and in 4th quadrant only cos and sec trigonometric ratios are positive rest negative.
Trigonometric formulae that will be helpful in solving such questions:
1) \[2\sin A \times \sin B = \cos (A - B) - \cos (A + B)\]
2) \[\sin ( - \theta ) = - \sin (\theta )\]
3) \[\cos ( - \theta ) = \cos (\theta )\]
Complete step by step solution:
Given: \[\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }\]
\[
\Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {(180 - 72)^ \circ }\sin {(180 - 36)^ \circ } \\
\Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {72^ \circ }\sin {36^ \circ }......\left( {\because \sin ({{180}^ \circ } - \theta ) = \sin \theta } \right) \\
\Rightarrow {\left( {\sin {{36}^ \circ }} \right)^2}{\left( {\sin {{72}^ \circ }} \right)^2} \\
\Rightarrow {\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)^2} \\
\]
Multiplying and dividing by 2 we get;
\[
\Rightarrow \dfrac{1}{4}\left\{ {{{\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)}^2}} \right\} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{(72 - 36)}^ \circ } - \cos {{(72 + 36)}^ \circ }} \right)^2}......\left\{ {Using{\text{ }}2\sin A \times \sin B = \cos (A - B) - \cos (A + B)} \right\} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\cos {{36}^ \circ } - \cos {{(90 + 18)}^ \circ }} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\cos {{36}^ \circ } + \sin {{18}^ \circ }} \right\}^2}....................Eq:01 \\
\]
Now, let us find the value of \[\sin {18^ \circ }\].
Let, \[\theta = {18^ \circ }\]
Multiplying both sides by 5 we get;
\[
\Rightarrow 5\theta = {90^ \circ } \\
\Rightarrow 2\theta + 3\theta = {90^ \circ } \\
\Rightarrow 2\theta = {90^ \circ } - 3\theta \\
\]
On applying \[\sin \theta \]both sides,
\[
\Rightarrow \sin (2\theta ) = \sin ({90^ \circ } - 3\theta ) \\
\Rightarrow \sin (2\theta ) = \operatorname{co} (3\theta )......\because \left( {\sin ({{90}^ \circ } - \theta ) = \cos \theta } \right) \\
\Rightarrow 2\sin \theta \cos \theta = 4{\cos ^3}\theta - 3\cos \theta \\
\Rightarrow 2\sin \theta = 4{\cos ^2}\theta - 3 \\
\Rightarrow 2\sin \theta = 4\left( {1 - {{\sin }^2}\theta } \right) - 3 \\
\Rightarrow 4{\sin ^2}\theta + 2\sin \theta - 1 = 0 \\
\]
Put (x) in place of \[\sin \theta \],
\[ \Rightarrow 4{x^2} + 2x - 1 = 0\]
Using discriminant formula, solve the above quadratic equation;
\[
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{{(2)}^2} - 4(4)( - 1)} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {20} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm 2\sqrt 5 }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ \pm \sqrt 5 - 1}}{4} \\
\]
Putting back the value of x and \[\theta \]in above equation,
\[ \Rightarrow \sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}......\because \left[ {{{18}^ \circ }\;lie{\text{ }}in{\text{ }}first{\text{ }}quadrant{\text{ }}so{\text{ }}it{\text{ }}must{\text{ }}be{\text{ }}positive} \right]\]
Similarly, the value of \[\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}\].
Putting back the values of \[\sin {18^ \circ }\]and \[\cos {36^ \circ }\]in Eq:01,
\[
\Rightarrow \dfrac{1}{4}{\left\{ {\dfrac{{\sqrt 5 + 1}}{4} + \dfrac{{\sqrt 5 - 1}}{4}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {2\dfrac{{\sqrt 5 }}{4}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\dfrac{{\sqrt 5 }}{2}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) = \dfrac{5}{{16}} \\
\]
Our required value is \[\dfrac{5}{{16}}\].
Option (D) is correct.
Note:
Quadrant plays an important role in trigonometric questions. In quadrant 1st all trigonometric ratios are positive, in 2nd quadrant only sin and cosec trigonometric ratios are positive rest negative, in 3rd quadrant only tan and cot trigonometric ratios are positive test negative and in 4th quadrant only cos and sec trigonometric ratios are positive rest negative.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

