
The value of \[\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }\]is:
(a) \[\dfrac{1}{4}\]
(b) \[\dfrac{1}{6}\]
(c) \[\dfrac{3}{4}\]
(d) \[\dfrac{5}{{16}}\]
Answer
577.2k+ views
Hint:
Trigonometric formulae that will be helpful in solving such questions:
1) \[2\sin A \times \sin B = \cos (A - B) - \cos (A + B)\]
2) \[\sin ( - \theta ) = - \sin (\theta )\]
3) \[\cos ( - \theta ) = \cos (\theta )\]
Complete step by step solution:
Given: \[\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }\]
\[
\Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {(180 - 72)^ \circ }\sin {(180 - 36)^ \circ } \\
\Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {72^ \circ }\sin {36^ \circ }......\left( {\because \sin ({{180}^ \circ } - \theta ) = \sin \theta } \right) \\
\Rightarrow {\left( {\sin {{36}^ \circ }} \right)^2}{\left( {\sin {{72}^ \circ }} \right)^2} \\
\Rightarrow {\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)^2} \\
\]
Multiplying and dividing by 2 we get;
\[
\Rightarrow \dfrac{1}{4}\left\{ {{{\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)}^2}} \right\} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{(72 - 36)}^ \circ } - \cos {{(72 + 36)}^ \circ }} \right)^2}......\left\{ {Using{\text{ }}2\sin A \times \sin B = \cos (A - B) - \cos (A + B)} \right\} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\cos {{36}^ \circ } - \cos {{(90 + 18)}^ \circ }} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\cos {{36}^ \circ } + \sin {{18}^ \circ }} \right\}^2}....................Eq:01 \\
\]
Now, let us find the value of \[\sin {18^ \circ }\].
Let, \[\theta = {18^ \circ }\]
Multiplying both sides by 5 we get;
\[
\Rightarrow 5\theta = {90^ \circ } \\
\Rightarrow 2\theta + 3\theta = {90^ \circ } \\
\Rightarrow 2\theta = {90^ \circ } - 3\theta \\
\]
On applying \[\sin \theta \]both sides,
\[
\Rightarrow \sin (2\theta ) = \sin ({90^ \circ } - 3\theta ) \\
\Rightarrow \sin (2\theta ) = \operatorname{co} (3\theta )......\because \left( {\sin ({{90}^ \circ } - \theta ) = \cos \theta } \right) \\
\Rightarrow 2\sin \theta \cos \theta = 4{\cos ^3}\theta - 3\cos \theta \\
\Rightarrow 2\sin \theta = 4{\cos ^2}\theta - 3 \\
\Rightarrow 2\sin \theta = 4\left( {1 - {{\sin }^2}\theta } \right) - 3 \\
\Rightarrow 4{\sin ^2}\theta + 2\sin \theta - 1 = 0 \\
\]
Put (x) in place of \[\sin \theta \],
\[ \Rightarrow 4{x^2} + 2x - 1 = 0\]
Using discriminant formula, solve the above quadratic equation;
\[
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{{(2)}^2} - 4(4)( - 1)} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {20} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm 2\sqrt 5 }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ \pm \sqrt 5 - 1}}{4} \\
\]
Putting back the value of x and \[\theta \]in above equation,
\[ \Rightarrow \sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}......\because \left[ {{{18}^ \circ }\;lie{\text{ }}in{\text{ }}first{\text{ }}quadrant{\text{ }}so{\text{ }}it{\text{ }}must{\text{ }}be{\text{ }}positive} \right]\]
Similarly, the value of \[\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}\].
Putting back the values of \[\sin {18^ \circ }\]and \[\cos {36^ \circ }\]in Eq:01,
\[
\Rightarrow \dfrac{1}{4}{\left\{ {\dfrac{{\sqrt 5 + 1}}{4} + \dfrac{{\sqrt 5 - 1}}{4}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {2\dfrac{{\sqrt 5 }}{4}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\dfrac{{\sqrt 5 }}{2}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) = \dfrac{5}{{16}} \\
\]
Our required value is \[\dfrac{5}{{16}}\].
Option (D) is correct.
Note:
Quadrant plays an important role in trigonometric questions. In quadrant 1st all trigonometric ratios are positive, in 2nd quadrant only sin and cosec trigonometric ratios are positive rest negative, in 3rd quadrant only tan and cot trigonometric ratios are positive test negative and in 4th quadrant only cos and sec trigonometric ratios are positive rest negative.
Trigonometric formulae that will be helpful in solving such questions:
1) \[2\sin A \times \sin B = \cos (A - B) - \cos (A + B)\]
2) \[\sin ( - \theta ) = - \sin (\theta )\]
3) \[\cos ( - \theta ) = \cos (\theta )\]
Complete step by step solution:
Given: \[\sin {36^ \circ }\sin {72^ \circ }\sin {108^ \circ }\sin {144^ \circ }\]
\[
\Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {(180 - 72)^ \circ }\sin {(180 - 36)^ \circ } \\
\Rightarrow \sin {36^ \circ }\sin {72^ \circ }\sin {72^ \circ }\sin {36^ \circ }......\left( {\because \sin ({{180}^ \circ } - \theta ) = \sin \theta } \right) \\
\Rightarrow {\left( {\sin {{36}^ \circ }} \right)^2}{\left( {\sin {{72}^ \circ }} \right)^2} \\
\Rightarrow {\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)^2} \\
\]
Multiplying and dividing by 2 we get;
\[
\Rightarrow \dfrac{1}{4}\left\{ {{{\left( {2\sin {{72}^ \circ } \times \sin {{36}^ \circ }} \right)}^2}} \right\} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{(72 - 36)}^ \circ } - \cos {{(72 + 36)}^ \circ }} \right)^2}......\left\{ {Using{\text{ }}2\sin A \times \sin B = \cos (A - B) - \cos (A + B)} \right\} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\
\Rightarrow \dfrac{1}{4}{\left( {\cos {{36}^ \circ } - \cos {{108}^ \circ }} \right)^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\cos {{36}^ \circ } - \cos {{(90 + 18)}^ \circ }} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\cos {{36}^ \circ } + \sin {{18}^ \circ }} \right\}^2}....................Eq:01 \\
\]
Now, let us find the value of \[\sin {18^ \circ }\].
Let, \[\theta = {18^ \circ }\]
Multiplying both sides by 5 we get;
\[
\Rightarrow 5\theta = {90^ \circ } \\
\Rightarrow 2\theta + 3\theta = {90^ \circ } \\
\Rightarrow 2\theta = {90^ \circ } - 3\theta \\
\]
On applying \[\sin \theta \]both sides,
\[
\Rightarrow \sin (2\theta ) = \sin ({90^ \circ } - 3\theta ) \\
\Rightarrow \sin (2\theta ) = \operatorname{co} (3\theta )......\because \left( {\sin ({{90}^ \circ } - \theta ) = \cos \theta } \right) \\
\Rightarrow 2\sin \theta \cos \theta = 4{\cos ^3}\theta - 3\cos \theta \\
\Rightarrow 2\sin \theta = 4{\cos ^2}\theta - 3 \\
\Rightarrow 2\sin \theta = 4\left( {1 - {{\sin }^2}\theta } \right) - 3 \\
\Rightarrow 4{\sin ^2}\theta + 2\sin \theta - 1 = 0 \\
\]
Put (x) in place of \[\sin \theta \],
\[ \Rightarrow 4{x^2} + 2x - 1 = 0\]
Using discriminant formula, solve the above quadratic equation;
\[
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{{(2)}^2} - 4(4)( - 1)} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm \sqrt {20} }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ - 2 \pm 2\sqrt 5 }}{{2(4)}} \\
\Rightarrow x = \dfrac{{ \pm \sqrt 5 - 1}}{4} \\
\]
Putting back the value of x and \[\theta \]in above equation,
\[ \Rightarrow \sin {18^ \circ } = \dfrac{{\sqrt 5 - 1}}{4}......\because \left[ {{{18}^ \circ }\;lie{\text{ }}in{\text{ }}first{\text{ }}quadrant{\text{ }}so{\text{ }}it{\text{ }}must{\text{ }}be{\text{ }}positive} \right]\]
Similarly, the value of \[\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}\].
Putting back the values of \[\sin {18^ \circ }\]and \[\cos {36^ \circ }\]in Eq:01,
\[
\Rightarrow \dfrac{1}{4}{\left\{ {\dfrac{{\sqrt 5 + 1}}{4} + \dfrac{{\sqrt 5 - 1}}{4}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {2\dfrac{{\sqrt 5 }}{4}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}{\left\{ {\dfrac{{\sqrt 5 }}{2}} \right\}^2} \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) = \dfrac{5}{{16}} \\
\]
Our required value is \[\dfrac{5}{{16}}\].
Option (D) is correct.
Note:
Quadrant plays an important role in trigonometric questions. In quadrant 1st all trigonometric ratios are positive, in 2nd quadrant only sin and cosec trigonometric ratios are positive rest negative, in 3rd quadrant only tan and cot trigonometric ratios are positive test negative and in 4th quadrant only cos and sec trigonometric ratios are positive rest negative.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

