
The value of $ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0} $ is equal to:
$
A.\,\,\dfrac{1}{8} \\
B.\,\,\dfrac{{ - 3}}{8} \\
C.\,\,\dfrac{{ - 1}}{8} \\
D.\,\,None\,\,of\,\,these \\
$
Answer
576k+ views
Hint: To find value we first show that value of $ \sin {10^0} + \sin {50^0} - \sin {70^0} $ is zero, then writing $ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0} $ as $ 3\sin {10^0}\sin {50^0}\left( { - \sin {{70}^0}} \right) $ by using algebraic identity and finally solving it by using identity of trigonometry to get required value of the problem.
$ \left( {{A^3} + {B^3} + {C^3} - 3ABC} \right) = \left( {A + B + C} \right)\left( {{A^2} + {B^2} + {C^2} - AB - BC - CA} \right) $ , $ \sin 3A = 3\sin A - 4{\sin ^3}A $
And $ \sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right) $ , $ \sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B $
Complete step-by-step answer:
We have given,
$ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0} $
Or we can write it as:
$ {\left( {\sin {{10}^0}} \right)^3} + {\left( {\sin {{50}^0}} \right)^3} + {\left( { - \sin {{70}^0}} \right)^3} $
Or
$ {\left( {\sin {{10}^0}} \right)^3} + {\left( {\sin {{50}^0}} \right)^3} + {\left\{ {\sin \left( { - {{70}^0}} \right)} \right\}^3} $
Also, from identity we have:
$ {A^3} + {B^3} + {C^3} = 3ABC,\,\,if\,\,A + B + C = 0 $
Therefore, to get solution of the problem, we just show that $ \sin {10^0} + \sin {50^0} + \sin ( - {70^0}) = 0 $
Now, solving $ \sin {10^0} + \sin {50^0} + \sin ( - {70^0}) $
We can write it as:
$ \sin {10^0} + \sin {50^0} - \sin {70^0} \left\{ {\sin ( - \theta ) = - \sin \theta } \right\} $
Applying identity to simplify
$
2\sin \left\{ {\dfrac{{10 + 50}}{2}} \right\}\cos \left\{ {\dfrac{{10 - 50}}{2}} \right\} - \sin {70^0} \\
\Rightarrow 2\sin {30^0} \cos \left( { - {{20}^0}} \right) - \sin {70^0} \left\{ {\cos ( - \theta ) = \cos \theta } \right\} \\
\Rightarrow 2\times\dfrac{1}{2}\cos {20^0} - \sin {70^0} \\
$
$ \Rightarrow \cos {20^0} - \sin {70^0} $
$ \Rightarrow \sin \left( 90^0 - 20^0 \right) - \sin {70^0} \left\{ {\cos \theta = \sin \left( {{{90}^0}\theta } \right)} \right\} $
$ \Rightarrow \sin {70^0} - \sin {70^0} = 0 $
Therefore, we have
$ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0} = 3.\left( {\sin {{10}^0}} \right)\left( {\sin {{50}^0}} \right)\left( { - \sin {{70}^0}} \right) $
Now, simplifying the right hand side of the above equation. We have
$
- 3\sin {10^0}\sin {50^0}\sin {70^0} \\
\Rightarrow - 3\sin {10^0}\sin \left( {60 - 10} \right)\sin \left( {60 + 10} \right) \\
\Rightarrow - 3\sin {10^0}\left\{ {{{\sin }^2}{{60}^0} - {{\sin }^2}10} \right\} \\
\Rightarrow - 3\sin {10^0}\left\{ {{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2} - {{\sin }^2}{{10}^0}} \right\} \\
\Rightarrow - 3\sin {10^0}\left\{ {\dfrac{3}{4} - {{\sin }^2}{{10}^0}} \right\} \\
\Rightarrow - 3\sin {10^0}\left( {\dfrac{{3 - 4{{\sin }^2}10}}{4}} \right) \\
\Rightarrow - 3\left( {\dfrac{{3\sin {{10}^0} - 4{{\sin }^3}10}}{4}} \right) \\
\Rightarrow \dfrac{{ - 3}}{4} \times \sin 3\left( {{{10}^0}} \right) \\
\Rightarrow \dfrac{{ - 3}}{4}\sin {30^0} \\
\Rightarrow - \dfrac{3}{4} \times \dfrac{1}{2} \\
\Rightarrow - \dfrac{3}{8} \;
$
Hence, from above we have:
$ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0} = - \dfrac{3}{8} $
Therefore, required value of $ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0}\,is - \dfrac{3}{8} $
So, the correct answer is “Option B”.
Note: Solution of the given problems can also be found in other ways. In this we use a different trigonometric identity to find its value. In this we substitute value of $ {\sin ^3}A,\,\,as\,\,\,\dfrac{{3\sin x - {{\sin }^3}x}}{4} $ on each term and then writing value of standard angle and simplify rest of the term by using different trigonometric formulas to find required solution.
$ \left( {{A^3} + {B^3} + {C^3} - 3ABC} \right) = \left( {A + B + C} \right)\left( {{A^2} + {B^2} + {C^2} - AB - BC - CA} \right) $ , $ \sin 3A = 3\sin A - 4{\sin ^3}A $
And $ \sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right) $ , $ \sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B $
Complete step-by-step answer:
We have given,
$ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0} $
Or we can write it as:
$ {\left( {\sin {{10}^0}} \right)^3} + {\left( {\sin {{50}^0}} \right)^3} + {\left( { - \sin {{70}^0}} \right)^3} $
Or
$ {\left( {\sin {{10}^0}} \right)^3} + {\left( {\sin {{50}^0}} \right)^3} + {\left\{ {\sin \left( { - {{70}^0}} \right)} \right\}^3} $
Also, from identity we have:
$ {A^3} + {B^3} + {C^3} = 3ABC,\,\,if\,\,A + B + C = 0 $
Therefore, to get solution of the problem, we just show that $ \sin {10^0} + \sin {50^0} + \sin ( - {70^0}) = 0 $
Now, solving $ \sin {10^0} + \sin {50^0} + \sin ( - {70^0}) $
We can write it as:
$ \sin {10^0} + \sin {50^0} - \sin {70^0} \left\{ {\sin ( - \theta ) = - \sin \theta } \right\} $
Applying identity to simplify
$
2\sin \left\{ {\dfrac{{10 + 50}}{2}} \right\}\cos \left\{ {\dfrac{{10 - 50}}{2}} \right\} - \sin {70^0} \\
\Rightarrow 2\sin {30^0} \cos \left( { - {{20}^0}} \right) - \sin {70^0} \left\{ {\cos ( - \theta ) = \cos \theta } \right\} \\
\Rightarrow 2\times\dfrac{1}{2}\cos {20^0} - \sin {70^0} \\
$
$ \Rightarrow \cos {20^0} - \sin {70^0} $
$ \Rightarrow \sin \left( 90^0 - 20^0 \right) - \sin {70^0} \left\{ {\cos \theta = \sin \left( {{{90}^0}\theta } \right)} \right\} $
$ \Rightarrow \sin {70^0} - \sin {70^0} = 0 $
Therefore, we have
$ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0} = 3.\left( {\sin {{10}^0}} \right)\left( {\sin {{50}^0}} \right)\left( { - \sin {{70}^0}} \right) $
Now, simplifying the right hand side of the above equation. We have
$
- 3\sin {10^0}\sin {50^0}\sin {70^0} \\
\Rightarrow - 3\sin {10^0}\sin \left( {60 - 10} \right)\sin \left( {60 + 10} \right) \\
\Rightarrow - 3\sin {10^0}\left\{ {{{\sin }^2}{{60}^0} - {{\sin }^2}10} \right\} \\
\Rightarrow - 3\sin {10^0}\left\{ {{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2} - {{\sin }^2}{{10}^0}} \right\} \\
\Rightarrow - 3\sin {10^0}\left\{ {\dfrac{3}{4} - {{\sin }^2}{{10}^0}} \right\} \\
\Rightarrow - 3\sin {10^0}\left( {\dfrac{{3 - 4{{\sin }^2}10}}{4}} \right) \\
\Rightarrow - 3\left( {\dfrac{{3\sin {{10}^0} - 4{{\sin }^3}10}}{4}} \right) \\
\Rightarrow \dfrac{{ - 3}}{4} \times \sin 3\left( {{{10}^0}} \right) \\
\Rightarrow \dfrac{{ - 3}}{4}\sin {30^0} \\
\Rightarrow - \dfrac{3}{4} \times \dfrac{1}{2} \\
\Rightarrow - \dfrac{3}{8} \;
$
Hence, from above we have:
$ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0} = - \dfrac{3}{8} $
Therefore, required value of $ {\sin ^3}{10^0} + {\sin ^3}{50^0} - {\sin ^3}{70^0}\,is - \dfrac{3}{8} $
So, the correct answer is “Option B”.
Note: Solution of the given problems can also be found in other ways. In this we use a different trigonometric identity to find its value. In this we substitute value of $ {\sin ^3}A,\,\,as\,\,\,\dfrac{{3\sin x - {{\sin }^3}x}}{4} $ on each term and then writing value of standard angle and simplify rest of the term by using different trigonometric formulas to find required solution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

