
The value of ${{\sin }^{-1}}\left( \dfrac{12}{13} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$ is equal to?
A. $\pi -{{\sin }^{-1}}\left( \dfrac{63}{65} \right)$
B. $\pi -{{\cos }^{-1}}\left( \dfrac{33}{65} \right)$
C. $\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
D. $\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \dfrac{9}{65} \right)$
Answer
573k+ views
Hint: We will use some of the trigonometric identities to solve this question. We will first use the identity, $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$. Now we will replace cos B as $\sqrt{1-{{\sin }^{2}}B}$ and similarly, we will use cos A as $\sqrt{1-{{\sin }^{2}}A}$. We will take sin A as $\dfrac{12}{13}$ and sin B as $\dfrac{3}{5}$. After that we will use the identities of ${{\sin }^{-1}}x={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}$ and ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ to get the answer.
Complete step-by-step solution:
In the question, we are asked to find the value of ${{\sin }^{-1}}\left( \dfrac{12}{13} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$. So, let us consider ${{\sin }^{-1}}\left( \dfrac{12}{13} \right)$ as A and ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)$ as B. To evaluate this, we will use the identity, $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$.
We know an identity that states that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, so here, we can apply it for A and B instead of $\theta $. So, in place of cos A, we will have, $\sqrt{1-{{\sin }^{2}}A}$ and in place of cos B we will have $\sqrt{1-{{\sin }^{2}}B}$. So, replacing them like this, we get the identity as follows,
$\sin \left( A-B \right)=\sin A\sqrt{1-{{\sin }^{2}}B}-\sin B\sqrt{1-{{\sin }^{2}}A}$
Now, we know that, ${{\sin }^{-1}}\left( \dfrac{12}{13} \right)=A$, so we can say that $\sin A=\dfrac{12}{13}$. Similarly, ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=B$, which can be written as, $\sin B=\dfrac{3}{5}$. We will now substitute the value of sin A and sin B in the above equation. So, we get,
$\sin \left( A-B \right)=\dfrac{12}{13}\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}-\dfrac{3}{5}\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}}$
On further simplification, we get,
$\begin{align}
& \sin \left( A-B \right)=\dfrac{12}{13}\sqrt{1-\dfrac{9}{25}}-\dfrac{3}{5}\sqrt{1-\dfrac{144}{169}} \\
& \Rightarrow \sin \left( A-B \right)=\dfrac{12}{13}\sqrt{\dfrac{16}{25}}-\dfrac{3}{5}\sqrt{\dfrac{25}{169}} \\
& \Rightarrow \sin \left( A-B \right)=\dfrac{12}{13}\times \dfrac{4}{5}-\dfrac{3}{5}\times \dfrac{5}{13} \\
& \Rightarrow \sin \left( A-B \right)=\dfrac{48}{65}-\dfrac{15}{65} \\
& \Rightarrow \sin \left( A-B \right)=\dfrac{33}{65} \\
\end{align}$
So, we get the value of $A-B={{\sin }^{-1}}\left( \dfrac{33}{65} \right)$ . This can be written as follows also,
${{\sin }^{-1}}\left( \dfrac{12}{13} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{33}{65} \right)$
We know that ${{\sin }^{-1}}x={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}$ and we will substitute x with $\dfrac{33}{65}$. So, we get,
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{33}{65} \right)={{\cos }^{-1}}\sqrt{1-{{\left( \dfrac{33}{65} \right)}^{2}}} \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{33}{65} \right)={{\cos }^{-1}}\sqrt{1-\dfrac{1089}{4225}} \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{33}{65} \right)={{\cos }^{-1}}\sqrt{\dfrac{3136}{4225}} \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{33}{65} \right)={{\cos }^{-1}}\left( \dfrac{56}{65} \right) \\
\end{align}$
Now, we will apply the identity, ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$, which can be written as, ${{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x$. Now, we will take the value of x as $\dfrac{56}{65}$. So, we get,
${{\cos }^{-1}}\left( \dfrac{56}{65} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
Hence, we get the value of ${{\sin }^{-1}}\left( \dfrac{12}{13} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{33}{65} \right)$ as,
${{\sin }^{-1}}\left( \dfrac{12}{13} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{56}{65} \right)$ .
Therefore, the correct answer is option C.
Note: The students can use a short cut identity in place of the long method that we have used in the solution. They can use the identity, ${{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( \sqrt{1-{{y}^{2}}}\times x-\sqrt{1-{{x}^{2}}}\times y \right)$ and after this they can apply the identity of, ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$.
Complete step-by-step solution:
In the question, we are asked to find the value of ${{\sin }^{-1}}\left( \dfrac{12}{13} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$. So, let us consider ${{\sin }^{-1}}\left( \dfrac{12}{13} \right)$ as A and ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)$ as B. To evaluate this, we will use the identity, $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$.
We know an identity that states that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, so here, we can apply it for A and B instead of $\theta $. So, in place of cos A, we will have, $\sqrt{1-{{\sin }^{2}}A}$ and in place of cos B we will have $\sqrt{1-{{\sin }^{2}}B}$. So, replacing them like this, we get the identity as follows,
$\sin \left( A-B \right)=\sin A\sqrt{1-{{\sin }^{2}}B}-\sin B\sqrt{1-{{\sin }^{2}}A}$
Now, we know that, ${{\sin }^{-1}}\left( \dfrac{12}{13} \right)=A$, so we can say that $\sin A=\dfrac{12}{13}$. Similarly, ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=B$, which can be written as, $\sin B=\dfrac{3}{5}$. We will now substitute the value of sin A and sin B in the above equation. So, we get,
$\sin \left( A-B \right)=\dfrac{12}{13}\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}-\dfrac{3}{5}\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}}$
On further simplification, we get,
$\begin{align}
& \sin \left( A-B \right)=\dfrac{12}{13}\sqrt{1-\dfrac{9}{25}}-\dfrac{3}{5}\sqrt{1-\dfrac{144}{169}} \\
& \Rightarrow \sin \left( A-B \right)=\dfrac{12}{13}\sqrt{\dfrac{16}{25}}-\dfrac{3}{5}\sqrt{\dfrac{25}{169}} \\
& \Rightarrow \sin \left( A-B \right)=\dfrac{12}{13}\times \dfrac{4}{5}-\dfrac{3}{5}\times \dfrac{5}{13} \\
& \Rightarrow \sin \left( A-B \right)=\dfrac{48}{65}-\dfrac{15}{65} \\
& \Rightarrow \sin \left( A-B \right)=\dfrac{33}{65} \\
\end{align}$
So, we get the value of $A-B={{\sin }^{-1}}\left( \dfrac{33}{65} \right)$ . This can be written as follows also,
${{\sin }^{-1}}\left( \dfrac{12}{13} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{33}{65} \right)$
We know that ${{\sin }^{-1}}x={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}$ and we will substitute x with $\dfrac{33}{65}$. So, we get,
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{33}{65} \right)={{\cos }^{-1}}\sqrt{1-{{\left( \dfrac{33}{65} \right)}^{2}}} \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{33}{65} \right)={{\cos }^{-1}}\sqrt{1-\dfrac{1089}{4225}} \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{33}{65} \right)={{\cos }^{-1}}\sqrt{\dfrac{3136}{4225}} \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{33}{65} \right)={{\cos }^{-1}}\left( \dfrac{56}{65} \right) \\
\end{align}$
Now, we will apply the identity, ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$, which can be written as, ${{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x$. Now, we will take the value of x as $\dfrac{56}{65}$. So, we get,
${{\cos }^{-1}}\left( \dfrac{56}{65} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{56}{65} \right)$
Hence, we get the value of ${{\sin }^{-1}}\left( \dfrac{12}{13} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{33}{65} \right)$ as,
${{\sin }^{-1}}\left( \dfrac{12}{13} \right)-{{\sin }^{-1}}\left( \dfrac{3}{5} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{56}{65} \right)$ .
Therefore, the correct answer is option C.
Note: The students can use a short cut identity in place of the long method that we have used in the solution. They can use the identity, ${{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( \sqrt{1-{{y}^{2}}}\times x-\sqrt{1-{{x}^{2}}}\times y \right)$ and after this they can apply the identity of, ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

