
The value of ${{\sin }^{-1}}\left( \cos \left( {{\cos }^{-1}}\cos x+{{\sin }^{-1}}\sin x \right) \right)$, where $x\in \left( \dfrac{\pi }{2},\pi \right)$ is equal to
[a] $\dfrac{\pi }{2}$
[b] $\pi $
[c] $-\pi $
[d] $-\dfrac{\pi }{2}$
Answer
592.2k+ views
Hint: Use the fact that if $\sin x=\sin y,$ then $x=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}$ and ${{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$ and if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$ and ${{\cos }^{-1}}x\in \left[ 0,\pi \right]$. Assume $u={{\cos }^{-1}}\left( \cos x \right)$ and hence prove that $u=2n\pi \pm x,n\in \mathbb{Z}$. Find the suitable value of n such that $u\in \left[ 0,2\pi \right]$. Hence find the value of u. Similarly, assume $v={{\sin }^{-1}}\left( \sin x \right)$ and hence prove that $v=n\pi +{{\left( -1 \right)}^{n}}x,n\in \mathbb{Z}$. Find the suitable value of n such that $v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$. Hence find the value of v. Hence find the value of $\cos \left( {{\cos }^{-1}}\cos x+{{\sin }^{-1}}\sin x \right)$ and hence evaluate the given expression.
Complete step-by-step answer:
Let $u={{\cos }^{-1}}\cos x$
We know that if $y={{\cos }^{-1}}x\Rightarrow x=\cos y$
Hence, we have
$\cos u=\cos x$
We know that if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$
Hence, we have
$u=2n\pi \pm x,n\in \mathbb{Z}$
We know that ${{\cos }^{-1}}x\in \left[ 0,\pi \right]$
Hence, we have $u\in \left[ 0,\pi \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right)$, we have \[x\in \left[ 0,\pi \right]\]
Hence, we have
$u=x$
Now, let $v={{\sin }^{-1}}\sin x$
Hence, we have
$\sin v=\sin x$
We know that if $\sin x=\sin y,$ then $x=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}$
Hence, we have
$v=n\pi +{{\left( -1 \right)}^{n}}x$
Since ${{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$, we have
$v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right),$ we have $\pi -x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Hence, we have
$v=\pi -x$
Hence, we have
${{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x=v+u=\pi -x+x=\pi $
Hence, we have
$\cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right)=\cos \pi =-1$
We know that ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)={{\sin }^{-1}}\left( -1 \right)=-{{\sin }^{-1}}1$
We know that ${{\sin }^{-1}}\left( 1 \right)=\dfrac{\pi }{2}$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)=-\dfrac{\pi }{2}$
Hence option [d] is correct.
Note: Alternative solution:
We know that
${{\sin }^{-1}}\sin \left( x \right)=\left\{ \begin{matrix}
\vdots \\
-\pi -x,x\in \left[ \dfrac{-3\pi }{2},\dfrac{-\pi }{2} \right] \\
x,x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] \\
\pi -x,x\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\
\vdots \\
\end{matrix} \right.$ and ${{\cos }^{-1}}\cos x=\left\{ \begin{matrix}
\vdots \\
2\pi +x,x\in \left[ -2\pi ,-\pi \right] \\
x,x\in \left[ 0,\pi \right] \\
2\pi -x,x\in \left[ \pi ,2\pi \right] \\
\vdots \\
\end{matrix} \right.$
Using these definitions, we can find the value of the above expression.
Graph of ${{\sin }^{-1}}\sin x$:
Graph of ${{\cos }^{-1}}\cos x$:
Complete step-by-step answer:
Let $u={{\cos }^{-1}}\cos x$
We know that if $y={{\cos }^{-1}}x\Rightarrow x=\cos y$
Hence, we have
$\cos u=\cos x$
We know that if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$
Hence, we have
$u=2n\pi \pm x,n\in \mathbb{Z}$
We know that ${{\cos }^{-1}}x\in \left[ 0,\pi \right]$
Hence, we have $u\in \left[ 0,\pi \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right)$, we have \[x\in \left[ 0,\pi \right]\]
Hence, we have
$u=x$
Now, let $v={{\sin }^{-1}}\sin x$
Hence, we have
$\sin v=\sin x$
We know that if $\sin x=\sin y,$ then $x=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}$
Hence, we have
$v=n\pi +{{\left( -1 \right)}^{n}}x$
Since ${{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$, we have
$v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right),$ we have $\pi -x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Hence, we have
$v=\pi -x$
Hence, we have
${{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x=v+u=\pi -x+x=\pi $
Hence, we have
$\cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right)=\cos \pi =-1$
We know that ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)={{\sin }^{-1}}\left( -1 \right)=-{{\sin }^{-1}}1$
We know that ${{\sin }^{-1}}\left( 1 \right)=\dfrac{\pi }{2}$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)=-\dfrac{\pi }{2}$
Hence option [d] is correct.
Note: Alternative solution:
We know that
${{\sin }^{-1}}\sin \left( x \right)=\left\{ \begin{matrix}
\vdots \\
-\pi -x,x\in \left[ \dfrac{-3\pi }{2},\dfrac{-\pi }{2} \right] \\
x,x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] \\
\pi -x,x\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\
\vdots \\
\end{matrix} \right.$ and ${{\cos }^{-1}}\cos x=\left\{ \begin{matrix}
\vdots \\
2\pi +x,x\in \left[ -2\pi ,-\pi \right] \\
x,x\in \left[ 0,\pi \right] \\
2\pi -x,x\in \left[ \pi ,2\pi \right] \\
\vdots \\
\end{matrix} \right.$
Using these definitions, we can find the value of the above expression.
Graph of ${{\sin }^{-1}}\sin x$:
Graph of ${{\cos }^{-1}}\cos x$:
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

