
The value of ${{\sin }^{-1}}\left( \cos \left( {{\cos }^{-1}}\cos x+{{\sin }^{-1}}\sin x \right) \right)$, where $x\in \left( \dfrac{\pi }{2},\pi \right)$ is equal to
[a] $\dfrac{\pi }{2}$
[b] $\pi $
[c] $-\pi $
[d] $-\dfrac{\pi }{2}$
Answer
606.6k+ views
Hint: Use the fact that if $\sin x=\sin y,$ then $x=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}$ and ${{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$ and if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$ and ${{\cos }^{-1}}x\in \left[ 0,\pi \right]$. Assume $u={{\cos }^{-1}}\left( \cos x \right)$ and hence prove that $u=2n\pi \pm x,n\in \mathbb{Z}$. Find the suitable value of n such that $u\in \left[ 0,2\pi \right]$. Hence find the value of u. Similarly, assume $v={{\sin }^{-1}}\left( \sin x \right)$ and hence prove that $v=n\pi +{{\left( -1 \right)}^{n}}x,n\in \mathbb{Z}$. Find the suitable value of n such that $v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$. Hence find the value of v. Hence find the value of $\cos \left( {{\cos }^{-1}}\cos x+{{\sin }^{-1}}\sin x \right)$ and hence evaluate the given expression.
Complete step-by-step answer:
Let $u={{\cos }^{-1}}\cos x$
We know that if $y={{\cos }^{-1}}x\Rightarrow x=\cos y$
Hence, we have
$\cos u=\cos x$
We know that if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$
Hence, we have
$u=2n\pi \pm x,n\in \mathbb{Z}$
We know that ${{\cos }^{-1}}x\in \left[ 0,\pi \right]$
Hence, we have $u\in \left[ 0,\pi \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right)$, we have \[x\in \left[ 0,\pi \right]\]
Hence, we have
$u=x$
Now, let $v={{\sin }^{-1}}\sin x$
Hence, we have
$\sin v=\sin x$
We know that if $\sin x=\sin y,$ then $x=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}$
Hence, we have
$v=n\pi +{{\left( -1 \right)}^{n}}x$
Since ${{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$, we have
$v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right),$ we have $\pi -x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Hence, we have
$v=\pi -x$
Hence, we have
${{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x=v+u=\pi -x+x=\pi $
Hence, we have
$\cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right)=\cos \pi =-1$
We know that ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)={{\sin }^{-1}}\left( -1 \right)=-{{\sin }^{-1}}1$
We know that ${{\sin }^{-1}}\left( 1 \right)=\dfrac{\pi }{2}$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)=-\dfrac{\pi }{2}$
Hence option [d] is correct.
Note: Alternative solution:
We know that
${{\sin }^{-1}}\sin \left( x \right)=\left\{ \begin{matrix}
\vdots \\
-\pi -x,x\in \left[ \dfrac{-3\pi }{2},\dfrac{-\pi }{2} \right] \\
x,x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] \\
\pi -x,x\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\
\vdots \\
\end{matrix} \right.$ and ${{\cos }^{-1}}\cos x=\left\{ \begin{matrix}
\vdots \\
2\pi +x,x\in \left[ -2\pi ,-\pi \right] \\
x,x\in \left[ 0,\pi \right] \\
2\pi -x,x\in \left[ \pi ,2\pi \right] \\
\vdots \\
\end{matrix} \right.$
Using these definitions, we can find the value of the above expression.
Graph of ${{\sin }^{-1}}\sin x$:
Graph of ${{\cos }^{-1}}\cos x$:
Complete step-by-step answer:
Let $u={{\cos }^{-1}}\cos x$
We know that if $y={{\cos }^{-1}}x\Rightarrow x=\cos y$
Hence, we have
$\cos u=\cos x$
We know that if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$
Hence, we have
$u=2n\pi \pm x,n\in \mathbb{Z}$
We know that ${{\cos }^{-1}}x\in \left[ 0,\pi \right]$
Hence, we have $u\in \left[ 0,\pi \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right)$, we have \[x\in \left[ 0,\pi \right]\]
Hence, we have
$u=x$
Now, let $v={{\sin }^{-1}}\sin x$
Hence, we have
$\sin v=\sin x$
We know that if $\sin x=\sin y,$ then $x=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}$
Hence, we have
$v=n\pi +{{\left( -1 \right)}^{n}}x$
Since ${{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$, we have
$v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right),$ we have $\pi -x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Hence, we have
$v=\pi -x$
Hence, we have
${{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x=v+u=\pi -x+x=\pi $
Hence, we have
$\cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right)=\cos \pi =-1$
We know that ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)={{\sin }^{-1}}\left( -1 \right)=-{{\sin }^{-1}}1$
We know that ${{\sin }^{-1}}\left( 1 \right)=\dfrac{\pi }{2}$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)=-\dfrac{\pi }{2}$
Hence option [d] is correct.
Note: Alternative solution:
We know that
${{\sin }^{-1}}\sin \left( x \right)=\left\{ \begin{matrix}
\vdots \\
-\pi -x,x\in \left[ \dfrac{-3\pi }{2},\dfrac{-\pi }{2} \right] \\
x,x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] \\
\pi -x,x\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\
\vdots \\
\end{matrix} \right.$ and ${{\cos }^{-1}}\cos x=\left\{ \begin{matrix}
\vdots \\
2\pi +x,x\in \left[ -2\pi ,-\pi \right] \\
x,x\in \left[ 0,\pi \right] \\
2\pi -x,x\in \left[ \pi ,2\pi \right] \\
\vdots \\
\end{matrix} \right.$
Using these definitions, we can find the value of the above expression.
Graph of ${{\sin }^{-1}}\sin x$:
Graph of ${{\cos }^{-1}}\cos x$:
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

