
The value of ${{\sin }^{-1}}\left( \cos \left( {{\cos }^{-1}}\cos x+{{\sin }^{-1}}\sin x \right) \right)$, where $x\in \left( \dfrac{\pi }{2},\pi \right)$ is equal to
[a] $\dfrac{\pi }{2}$
[b] $\pi $
[c] $-\pi $
[d] $-\dfrac{\pi }{2}$
Answer
511.2k+ views
Hint: Use the fact that if $\sin x=\sin y,$ then $x=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}$ and ${{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$ and if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$ and ${{\cos }^{-1}}x\in \left[ 0,\pi \right]$. Assume $u={{\cos }^{-1}}\left( \cos x \right)$ and hence prove that $u=2n\pi \pm x,n\in \mathbb{Z}$. Find the suitable value of n such that $u\in \left[ 0,2\pi \right]$. Hence find the value of u. Similarly, assume $v={{\sin }^{-1}}\left( \sin x \right)$ and hence prove that $v=n\pi +{{\left( -1 \right)}^{n}}x,n\in \mathbb{Z}$. Find the suitable value of n such that $v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$. Hence find the value of v. Hence find the value of $\cos \left( {{\cos }^{-1}}\cos x+{{\sin }^{-1}}\sin x \right)$ and hence evaluate the given expression.
Complete step-by-step answer:
Let $u={{\cos }^{-1}}\cos x$
We know that if $y={{\cos }^{-1}}x\Rightarrow x=\cos y$
Hence, we have
$\cos u=\cos x$
We know that if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$
Hence, we have
$u=2n\pi \pm x,n\in \mathbb{Z}$
We know that ${{\cos }^{-1}}x\in \left[ 0,\pi \right]$
Hence, we have $u\in \left[ 0,\pi \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right)$, we have \[x\in \left[ 0,\pi \right]\]
Hence, we have
$u=x$
Now, let $v={{\sin }^{-1}}\sin x$
Hence, we have
$\sin v=\sin x$
We know that if $\sin x=\sin y,$ then $x=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}$
Hence, we have
$v=n\pi +{{\left( -1 \right)}^{n}}x$
Since ${{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$, we have
$v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right),$ we have $\pi -x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Hence, we have
$v=\pi -x$
Hence, we have
${{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x=v+u=\pi -x+x=\pi $
Hence, we have
$\cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right)=\cos \pi =-1$
We know that ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)={{\sin }^{-1}}\left( -1 \right)=-{{\sin }^{-1}}1$
We know that ${{\sin }^{-1}}\left( 1 \right)=\dfrac{\pi }{2}$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)=-\dfrac{\pi }{2}$
Hence option [d] is correct.
Note: Alternative solution:
We know that
${{\sin }^{-1}}\sin \left( x \right)=\left\{ \begin{matrix}
\vdots \\
-\pi -x,x\in \left[ \dfrac{-3\pi }{2},\dfrac{-\pi }{2} \right] \\
x,x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] \\
\pi -x,x\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\
\vdots \\
\end{matrix} \right.$ and ${{\cos }^{-1}}\cos x=\left\{ \begin{matrix}
\vdots \\
2\pi +x,x\in \left[ -2\pi ,-\pi \right] \\
x,x\in \left[ 0,\pi \right] \\
2\pi -x,x\in \left[ \pi ,2\pi \right] \\
\vdots \\
\end{matrix} \right.$
Using these definitions, we can find the value of the above expression.
Graph of ${{\sin }^{-1}}\sin x$:
Graph of ${{\cos }^{-1}}\cos x$:
Complete step-by-step answer:
Let $u={{\cos }^{-1}}\cos x$
We know that if $y={{\cos }^{-1}}x\Rightarrow x=\cos y$
Hence, we have
$\cos u=\cos x$
We know that if $\cos x=\cos y$, then $x=2n\pi \pm y,n\in \mathbb{Z}$
Hence, we have
$u=2n\pi \pm x,n\in \mathbb{Z}$
We know that ${{\cos }^{-1}}x\in \left[ 0,\pi \right]$
Hence, we have $u\in \left[ 0,\pi \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right)$, we have \[x\in \left[ 0,\pi \right]\]
Hence, we have
$u=x$
Now, let $v={{\sin }^{-1}}\sin x$
Hence, we have
$\sin v=\sin x$
We know that if $\sin x=\sin y,$ then $x=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}$
Hence, we have
$v=n\pi +{{\left( -1 \right)}^{n}}x$
Since ${{\sin }^{-1}}x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$, we have
$v\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Now since $x\in \left( \dfrac{\pi }{2},\pi \right),$ we have $\pi -x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]$
Hence, we have
$v=\pi -x$
Hence, we have
${{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x=v+u=\pi -x+x=\pi $
Hence, we have
$\cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right)=\cos \pi =-1$
We know that ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)={{\sin }^{-1}}\left( -1 \right)=-{{\sin }^{-1}}1$
We know that ${{\sin }^{-1}}\left( 1 \right)=\dfrac{\pi }{2}$
Hence, we have
$\sin \left( \cos \left( {{\sin }^{-1}}\sin x+{{\cos }^{-1}}\cos x \right) \right)=-\dfrac{\pi }{2}$
Hence option [d] is correct.
Note: Alternative solution:
We know that
${{\sin }^{-1}}\sin \left( x \right)=\left\{ \begin{matrix}
\vdots \\
-\pi -x,x\in \left[ \dfrac{-3\pi }{2},\dfrac{-\pi }{2} \right] \\
x,x\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] \\
\pi -x,x\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\
\vdots \\
\end{matrix} \right.$ and ${{\cos }^{-1}}\cos x=\left\{ \begin{matrix}
\vdots \\
2\pi +x,x\in \left[ -2\pi ,-\pi \right] \\
x,x\in \left[ 0,\pi \right] \\
2\pi -x,x\in \left[ \pi ,2\pi \right] \\
\vdots \\
\end{matrix} \right.$
Using these definitions, we can find the value of the above expression.
Graph of ${{\sin }^{-1}}\sin x$:

Graph of ${{\cos }^{-1}}\cos x$:

Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
