
The value of $\sin 10^\circ \,\sin 30^\circ \,\sin 50^\circ \,\sin 70^\circ $is:
A) $\dfrac{1}{{36}}$
B) $\dfrac{1}{{32}}$
C) $\dfrac{1}{{18}}$
D) $\dfrac{1}{{16}}$
Answer
580.5k+ views
Hint:
In this question, we will try to use this formula sin2A = 2sinAcosA. But before we use this formula we need to multiply and divide it by $2\cos 10^\circ $ so that we can use the formula. Now at the place of $2\sin 10^\circ \cos 10^\circ $ we can write $\sin 20^\circ $. Then we put the value of $\sin 30^\circ $ that is $\dfrac{1}{2}$. Let’s see how we solve it further.
Complete step by step solution:
$\sin 10^\circ \,\sin 30^\circ \,\sin 50^\circ \,\sin 70^\circ $
Here, we will multiply and divide it by $2\cos 10^\circ $.
$\dfrac{{2\cos 10^\circ \sin 10^\circ \,\sin 30^\circ \,\sin 50^\circ \,\sin 70^\circ }}{{2\cos 10^\circ }}$
Here, we can use the formula sin2A = 2sinAcosA on $2\cos 10^\circ \sin 10^\circ $$ = \sin 20^\circ $
$\dfrac{{\sin 20^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ }}{{2\cos 10^\circ }}$
$ \Rightarrow \dfrac{{\sin 20^\circ \sin 50^\circ \sin 70^\circ }}{{4\cos 10^\circ }}$(the value of $\sin 30^\circ = \dfrac{1}{2}$)
$ \Rightarrow \dfrac{{\sin 20^\circ \sin 50^\circ \sin (90^\circ - 20^\circ )}}{{4\cos 10^\circ }}$(we know that $\sin (90^\circ - \theta ) = \cos \theta $)
$ \Rightarrow \dfrac{{\sin 20^\circ \sin 50^\circ \cos 20^\circ }}{{4\cos 10^\circ }}$
Multiplying with 2 in numerator and denominator.
$ \Rightarrow \dfrac{{2\sin 20^\circ \cos 20^\circ \sin 50^\circ }}{{8\cos 10^\circ }}$
We can see that after multiplying with 2, we can use this formula sin2A = 2sinAcosA on $2\sin 20^\circ \cos 20^\circ = \sin 40^\circ $
$ \Rightarrow \dfrac{{\sin 40^\circ \sin 50^\circ }}{{8\cos 10^\circ }}$
$ \Rightarrow \dfrac{{\sin 40^\circ \sin (90^\circ - 50^\circ )}}{{8\cos 10^\circ }}$(We know that $\sin (90^\circ - \theta ) = \cos \theta $)
$ \Rightarrow \dfrac{{\sin 40^\circ \cos 40}}{{8\cos 10^\circ }}$
Again, multiplying numerator and denominator with 2.
$ \Rightarrow \dfrac{{2\sin 40^\circ \cos 40^\circ }}{{16\cos 10^\circ }}$.
We can see that after multiplying with 2, we can use this formula sin2A = 2sinAcosA on $2\sin 40^\circ \cos 40^\circ = \sin 80^\circ $
$ \Rightarrow \dfrac{{\sin 80^\circ }}{{16\cos 10^\circ }}$
$ \Rightarrow \dfrac{{\sin (90^\circ - 10^\circ )}}{{16\cos 10^\circ }}$(We know that $\sin (90^\circ - \theta ) = \cos \theta $)
$ \Rightarrow \dfrac{{\cos 10^\circ }}{{16\cos 10^\circ }}$= $\dfrac{1}{{16}}$.
Thus, the value of $\sin 10^\circ \,\sin 30^\circ \,\sin 50^\circ \,\sin 70^\circ $is $\dfrac{1}{{16}}$.
Hence, the option D is the correct option.
Note:
Note: Students should appropriately use the formula. To convert $\sin 70^\circ $into $\cos 20^\circ $ by using formula $\sin (90^\circ - \theta ) = \cos \theta $. Then again, we multiplied numerator and denominator by 2 because we needed to use this formula sin2A = 2sinAcosA. You should be careful while solving this question.
In this question, we will try to use this formula sin2A = 2sinAcosA. But before we use this formula we need to multiply and divide it by $2\cos 10^\circ $ so that we can use the formula. Now at the place of $2\sin 10^\circ \cos 10^\circ $ we can write $\sin 20^\circ $. Then we put the value of $\sin 30^\circ $ that is $\dfrac{1}{2}$. Let’s see how we solve it further.
Complete step by step solution:
$\sin 10^\circ \,\sin 30^\circ \,\sin 50^\circ \,\sin 70^\circ $
Here, we will multiply and divide it by $2\cos 10^\circ $.
$\dfrac{{2\cos 10^\circ \sin 10^\circ \,\sin 30^\circ \,\sin 50^\circ \,\sin 70^\circ }}{{2\cos 10^\circ }}$
Here, we can use the formula sin2A = 2sinAcosA on $2\cos 10^\circ \sin 10^\circ $$ = \sin 20^\circ $
$\dfrac{{\sin 20^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ }}{{2\cos 10^\circ }}$
$ \Rightarrow \dfrac{{\sin 20^\circ \sin 50^\circ \sin 70^\circ }}{{4\cos 10^\circ }}$(the value of $\sin 30^\circ = \dfrac{1}{2}$)
$ \Rightarrow \dfrac{{\sin 20^\circ \sin 50^\circ \sin (90^\circ - 20^\circ )}}{{4\cos 10^\circ }}$(we know that $\sin (90^\circ - \theta ) = \cos \theta $)
$ \Rightarrow \dfrac{{\sin 20^\circ \sin 50^\circ \cos 20^\circ }}{{4\cos 10^\circ }}$
Multiplying with 2 in numerator and denominator.
$ \Rightarrow \dfrac{{2\sin 20^\circ \cos 20^\circ \sin 50^\circ }}{{8\cos 10^\circ }}$
We can see that after multiplying with 2, we can use this formula sin2A = 2sinAcosA on $2\sin 20^\circ \cos 20^\circ = \sin 40^\circ $
$ \Rightarrow \dfrac{{\sin 40^\circ \sin 50^\circ }}{{8\cos 10^\circ }}$
$ \Rightarrow \dfrac{{\sin 40^\circ \sin (90^\circ - 50^\circ )}}{{8\cos 10^\circ }}$(We know that $\sin (90^\circ - \theta ) = \cos \theta $)
$ \Rightarrow \dfrac{{\sin 40^\circ \cos 40}}{{8\cos 10^\circ }}$
Again, multiplying numerator and denominator with 2.
$ \Rightarrow \dfrac{{2\sin 40^\circ \cos 40^\circ }}{{16\cos 10^\circ }}$.
We can see that after multiplying with 2, we can use this formula sin2A = 2sinAcosA on $2\sin 40^\circ \cos 40^\circ = \sin 80^\circ $
$ \Rightarrow \dfrac{{\sin 80^\circ }}{{16\cos 10^\circ }}$
$ \Rightarrow \dfrac{{\sin (90^\circ - 10^\circ )}}{{16\cos 10^\circ }}$(We know that $\sin (90^\circ - \theta ) = \cos \theta $)
$ \Rightarrow \dfrac{{\cos 10^\circ }}{{16\cos 10^\circ }}$= $\dfrac{1}{{16}}$.
Thus, the value of $\sin 10^\circ \,\sin 30^\circ \,\sin 50^\circ \,\sin 70^\circ $is $\dfrac{1}{{16}}$.
Hence, the option D is the correct option.
Note:
Note: Students should appropriately use the formula. To convert $\sin 70^\circ $into $\cos 20^\circ $ by using formula $\sin (90^\circ - \theta ) = \cos \theta $. Then again, we multiplied numerator and denominator by 2 because we needed to use this formula sin2A = 2sinAcosA. You should be careful while solving this question.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

