
The value of $\sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}$ is
(A) 0
(B) $-2\cos {{10}^{\circ }}$
(C) $-2\sin {{10}^{\circ }}$
(D) None
Answer
574.5k+ views
Hint: We start solving this question by taking the trigonometric identities such as $\sin \left( {{360}^{\circ }}+x \right)=\sin x$, $\sin \left( {{360}^{\circ }}-x \right)=-\sin x$ and $\sin \left( {{90}^{\circ }}-x \right)=\cos x$. Then we use them to find the values of $\sin {{100}^{\circ }}$, $\sin {{200}^{\circ }}$, $\sin {{290}^{\circ }}$ and $\sin {{380}^{\circ }}$ in terms of $\sin {{10}^{\circ }}$ and $\cos {{10}^{\circ }}$. Then which of the options has the answer that we got and mark it.
Complete step-by-step answer:
Before solving the question, we need to go through some trigonometric identities.
$\begin{align}
& \sin \left( {{360}^{\circ }}+x \right)=\sin x \\
& \sin \left( {{360}^{\circ }}-x \right)=-\sin x \\
& \sin \left( {{180}^{\circ }}+x \right)=-\sin x \\
& \sin \left( {{180}^{\circ }}-x \right)=\sin x \\
& \sin \left( {{90}^{\circ }}+x \right)=-\cos x \\
& \sin \left( {{90}^{\circ }}-x \right)=\cos x \\
\end{align}$
Now let us consider the given expression $\sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}$.
Let us consider $\sin {{100}^{\circ }}$, we can apply the above discussed identity $\sin \left( {{90}^{\circ }}+x \right)=-\cos x$ to it.
$\sin \left( {{100}^{\circ }} \right)=\sin \left( {{90}^{\circ }}+{{10}^{\circ }} \right)=-\cos {{10}^{\circ }}$
Now let us consider $\sin {{200}^{\circ }}$. Let us apply the property $\sin \left( {{180}^{\circ }}+x \right)=-\sin x$ discussed above to it.
$\sin {{200}^{\circ }}=\sin \left( {{180}^{\circ }}+{{20}^{\circ }} \right)=-\sin {{20}^{\circ }}$
Now let us consider $\sin {{290}^{\circ }}$. Let us apply the property $\sin \left( {{270}^{\circ }}+x \right)=-\cos x$ discussed above to it.
$\sin {{290}^{\circ }}=\sin \left( {{270}^{\circ }}+{{20}^{\circ }} \right)=-\cos {{20}^{\circ }}$
Now let us consider $\sin {{380}^{\circ }}$. Let us apply the property $\sin \left( {{360}^{\circ }}+x \right)=\sin x$ discussed above to it.
$\sin {{380}^{\circ }}=\sin \left( {{360}^{\circ }}+{{20}^{\circ }} \right)=\sin {{20}^{\circ }}$
So, by adding them we can find our required value. So, we get
$\begin{align}
& \Rightarrow \sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}=-\cos {{10}^{\circ }}-\sin {{20}^{\circ }}-\cos {{20}^{\circ }}+\sin {{20}^{\circ }} \\
& \Rightarrow \sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}=-\cos {{10}^{\circ }}-\cos {{20}^{\circ }} \\
\end{align}$
Hence the value we get is $-\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)$.
Now let us consider the formula,
$\cos A+\cos B=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
Using this formula, we can write $-\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)$ as
$\begin{align}
& \Rightarrow -\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)=-2\cos \dfrac{{{10}^{\circ }}+{{20}^{\circ }}}{2}\cos \dfrac{{{10}^{\circ }}-{{20}^{\circ }}}{2} \\
& \Rightarrow -\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)=-2\cos {{15}^{\circ }}\cos \left( -{{5}^{\circ }} \right) \\
\end{align}$
As $\cos \left( -\theta \right)=\cos \theta $
Hence the value we get is $-2\cos {{15}^{\circ }}\cos {{5}^{\circ }}$.
So, the correct answer is “Option D”.
Note: The common mistake that one does while solving this type of problem is one might take the trigonometric identities wrong by taking the wrong sign like taking $\sin \left( {{180}^{\circ }}-x \right)=-\sin x$ while the actual one is $\sin \left( {{180}^{\circ }}-x \right)=-\sin x$ or by taking sine instead of cosine like taking the identity as $\sin \left( {{90}^{\circ }}-x \right)=\sin x$ and $\sin \left( {{360}^{\circ }}-x \right)=\sin x$ which are also wrong. So, one needs to be careful while applying the trigonometric identities.
Complete step-by-step answer:
Before solving the question, we need to go through some trigonometric identities.
$\begin{align}
& \sin \left( {{360}^{\circ }}+x \right)=\sin x \\
& \sin \left( {{360}^{\circ }}-x \right)=-\sin x \\
& \sin \left( {{180}^{\circ }}+x \right)=-\sin x \\
& \sin \left( {{180}^{\circ }}-x \right)=\sin x \\
& \sin \left( {{90}^{\circ }}+x \right)=-\cos x \\
& \sin \left( {{90}^{\circ }}-x \right)=\cos x \\
\end{align}$
Now let us consider the given expression $\sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}$.
Let us consider $\sin {{100}^{\circ }}$, we can apply the above discussed identity $\sin \left( {{90}^{\circ }}+x \right)=-\cos x$ to it.
$\sin \left( {{100}^{\circ }} \right)=\sin \left( {{90}^{\circ }}+{{10}^{\circ }} \right)=-\cos {{10}^{\circ }}$
Now let us consider $\sin {{200}^{\circ }}$. Let us apply the property $\sin \left( {{180}^{\circ }}+x \right)=-\sin x$ discussed above to it.
$\sin {{200}^{\circ }}=\sin \left( {{180}^{\circ }}+{{20}^{\circ }} \right)=-\sin {{20}^{\circ }}$
Now let us consider $\sin {{290}^{\circ }}$. Let us apply the property $\sin \left( {{270}^{\circ }}+x \right)=-\cos x$ discussed above to it.
$\sin {{290}^{\circ }}=\sin \left( {{270}^{\circ }}+{{20}^{\circ }} \right)=-\cos {{20}^{\circ }}$
Now let us consider $\sin {{380}^{\circ }}$. Let us apply the property $\sin \left( {{360}^{\circ }}+x \right)=\sin x$ discussed above to it.
$\sin {{380}^{\circ }}=\sin \left( {{360}^{\circ }}+{{20}^{\circ }} \right)=\sin {{20}^{\circ }}$
So, by adding them we can find our required value. So, we get
$\begin{align}
& \Rightarrow \sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}=-\cos {{10}^{\circ }}-\sin {{20}^{\circ }}-\cos {{20}^{\circ }}+\sin {{20}^{\circ }} \\
& \Rightarrow \sin {{100}^{\circ }}+\sin {{200}^{\circ }}+\sin {{290}^{\circ }}+\sin {{380}^{\circ }}=-\cos {{10}^{\circ }}-\cos {{20}^{\circ }} \\
\end{align}$
Hence the value we get is $-\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)$.
Now let us consider the formula,
$\cos A+\cos B=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
Using this formula, we can write $-\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)$ as
$\begin{align}
& \Rightarrow -\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)=-2\cos \dfrac{{{10}^{\circ }}+{{20}^{\circ }}}{2}\cos \dfrac{{{10}^{\circ }}-{{20}^{\circ }}}{2} \\
& \Rightarrow -\left( \cos {{10}^{\circ }}+\cos {{20}^{\circ }} \right)=-2\cos {{15}^{\circ }}\cos \left( -{{5}^{\circ }} \right) \\
\end{align}$
As $\cos \left( -\theta \right)=\cos \theta $
Hence the value we get is $-2\cos {{15}^{\circ }}\cos {{5}^{\circ }}$.
So, the correct answer is “Option D”.
Note: The common mistake that one does while solving this type of problem is one might take the trigonometric identities wrong by taking the wrong sign like taking $\sin \left( {{180}^{\circ }}-x \right)=-\sin x$ while the actual one is $\sin \left( {{180}^{\circ }}-x \right)=-\sin x$ or by taking sine instead of cosine like taking the identity as $\sin \left( {{90}^{\circ }}-x \right)=\sin x$ and $\sin \left( {{360}^{\circ }}-x \right)=\sin x$ which are also wrong. So, one needs to be careful while applying the trigonometric identities.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

