
The value of $ \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] $ is ______________.
Answer
524.4k+ views
Hint: Here we are given two different trigonometric functions, secant function and tangent inverse function; there are different formulas that can help us find the relation between them. We see that the secant function lies outside all the brackets and inside the brackets we have two inverse tangent functions. Always simplify the inner bracket first.
Formulas used:
$ {\tan ^{ - 1}}(x) - {\tan ^{ - 1}}(y) = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) $
$ {\tan ^{ - 1}}(1) = \dfrac{\pi }{4} $
Complete step-by-step answer:
The question given to us requires us to find the value of this trigonometric form: $ \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] $
We can solve this question in two parts;
First part we can solve the terms within the inner bracket that is:
$ \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] $
Once we simplify the inner terms, we can move forward with finding: $ \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] $
To solve the first part we can use a formula that involves the subtraction of inverse of tangents, the formula looks like this:
$ \Rightarrow {\tan ^{ - 1}}(x) - {\tan ^{ - 1}}(y) = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) $ ; here the values of $ x $ and $ y $ are given within the question.
$ \Rightarrow x = \dfrac{{b + a}}{{b - a}} $ and $ \Rightarrow y = \dfrac{a}{b} $
Next we can proceed with applying the formula, so we substitute the values in the question in place of $ x $ and $ y $ :
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{b + a}}{{b - a}}} \right) - \left( {\dfrac{a}{b}} \right)}}{{1 + \left( {\dfrac{{b + a}}{{b - a}} \times \dfrac{a}{b}} \right)}}} \right) $
Then we simplify the terms within the brackets;
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{b^2} + ab - ab + {a^2}}}{{{b^2} - ab + ab + {a^2}}}} \right) $
Simplifying further we get;
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{b^2} + {a^2}}}{{{b^2} + {a^2}}}} \right) $
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = {\tan ^{ - 1}}\left( 1 \right) $
This can also be written as;
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = \dfrac{\pi }{4} $
Now that we have simplified the inner bracket to its maximum, we can write the term that was there outside the bracket;
$ \Rightarrow \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] = \sec \left( {\dfrac{\pi }{4}} \right) $
$ \Rightarrow \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] = \dfrac{1}{{\cos \left( {\dfrac{\pi }{4}} \right)}} $
Then we obtain the answer:
$ \Rightarrow \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] = \sqrt 2 $
Therefore the answer is the final value we obtain for the given trigonometric form, it is $ \sqrt 2 $ .
So, the correct answer is “ $ \sqrt 2 $ ”.
Note: We should know the values of basic trigonometric angular function. We should be thorough with at least values of $ {0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ } $ for the trigonometric functions sine, cosine, tangent. The values for other functions like secant, cosecant and cotangent can be calculated by taking the inverted values of cosine, sine and tangent functions respectively.
Formulas used:
$ {\tan ^{ - 1}}(x) - {\tan ^{ - 1}}(y) = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) $
$ {\tan ^{ - 1}}(1) = \dfrac{\pi }{4} $
Complete step-by-step answer:
The question given to us requires us to find the value of this trigonometric form: $ \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] $
We can solve this question in two parts;
First part we can solve the terms within the inner bracket that is:
$ \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] $
Once we simplify the inner terms, we can move forward with finding: $ \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] $
To solve the first part we can use a formula that involves the subtraction of inverse of tangents, the formula looks like this:
$ \Rightarrow {\tan ^{ - 1}}(x) - {\tan ^{ - 1}}(y) = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) $ ; here the values of $ x $ and $ y $ are given within the question.
$ \Rightarrow x = \dfrac{{b + a}}{{b - a}} $ and $ \Rightarrow y = \dfrac{a}{b} $
Next we can proceed with applying the formula, so we substitute the values in the question in place of $ x $ and $ y $ :
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{b + a}}{{b - a}}} \right) - \left( {\dfrac{a}{b}} \right)}}{{1 + \left( {\dfrac{{b + a}}{{b - a}} \times \dfrac{a}{b}} \right)}}} \right) $
Then we simplify the terms within the brackets;
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{b^2} + ab - ab + {a^2}}}{{{b^2} - ab + ab + {a^2}}}} \right) $
Simplifying further we get;
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{b^2} + {a^2}}}{{{b^2} + {a^2}}}} \right) $
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = {\tan ^{ - 1}}\left( 1 \right) $
This can also be written as;
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) = \dfrac{\pi }{4} $
Now that we have simplified the inner bracket to its maximum, we can write the term that was there outside the bracket;
$ \Rightarrow \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] = \sec \left( {\dfrac{\pi }{4}} \right) $
$ \Rightarrow \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] = \dfrac{1}{{\cos \left( {\dfrac{\pi }{4}} \right)}} $
Then we obtain the answer:
$ \Rightarrow \sec \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{b + a}}{{b - a}}} \right) - {{\tan }^{ - 1}}\left( {\dfrac{a}{b}} \right)} \right] = \sqrt 2 $
Therefore the answer is the final value we obtain for the given trigonometric form, it is $ \sqrt 2 $ .
So, the correct answer is “ $ \sqrt 2 $ ”.
Note: We should know the values of basic trigonometric angular function. We should be thorough with at least values of $ {0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ } $ for the trigonometric functions sine, cosine, tangent. The values for other functions like secant, cosecant and cotangent can be calculated by taking the inverted values of cosine, sine and tangent functions respectively.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

