
The value of $\sec {\text{ }}{50^ \circ } + \tan {\text{ }}{50^ \circ }$ is equal to
A) $\tan {\text{ }}{20^ \circ } + \tan {\text{ }}{50^ \circ }$
B) $2\tan {\text{ }}{20^ \circ } + \tan {\text{ }}{50^ \circ }$
C) $\tan {\text{ }}{20^ \circ } + 2\tan {\text{ }}{50^ \circ }$
D) $2\tan {\text{ }}{20^ \circ } + 2\tan {\text{ }}{50^ \circ }$
Answer
496.5k+ views
Hint: We have to solve the given trigonometric expression. The expression is the sum of sec and tan functions, although we know the standard values of trigonometric functions, the degree which is asked is not a standard degree which means we have to use another method to find the solution. We will use the formulae:
$\sin \theta = \cos (90 - \theta )$
$\cos \theta = \sin (90 - \theta )$
We will first express the first term in terms of cos and sin and then solve it further.
Complete step by step answer:
We are given the expression:
$\sec {\text{ }}{50^ \circ } + \tan {\text{ }}{50^ \circ }$
As $\sec \theta = \dfrac{1}{{\cos \theta }}$
$ = \dfrac{1}{{\cos {{50}^ \circ }}} + \tan {\text{ }}{50^ \circ }$
Multiplying numerator and denominator of the first term by $\cos {20^o}$ we get,
\[ \Rightarrow \left[ {\dfrac{{cos{\text{ }}20^\circ }}{{cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
$\cos {20^o}$ can be written as $\sin {70^o}$ from the formula $\cos \theta = \sin (90 - \theta )$, we can thus write,
\[ \Rightarrow \left[ {\dfrac{{sin{\text{ }}70^\circ }}{{cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
\[ \Rightarrow \left[ {\dfrac{{sin\left( {50^\circ {\text{ }} + {\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}}{\text{ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
Using the compound formula : $\sin (A + B) = \sin A\cos B + \cos A\sin B$
\[ \Rightarrow \left[ {\dfrac{{\left( {sin{\text{ }}50^\circ {\text{ }}cos{\text{ }}20^\circ {\text{ }} + {\text{ }}cos{\text{ }}50^\circ {\text{ }}sin{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
\[ \Rightarrow {\text{ }}\dfrac{{\left( {sin{\text{ }}50^\circ {\text{ }}cos{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}} + {\text{ }}\dfrac{{\left( {cos{\text{ }}50^\circ {\text{ }}sin{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}} + {\text{ }}tan{\text{ }}50^\circ \]
The first two expression will now be reduced first by cancelling the common factors present in the numerator and the denominator and then it will be written in the terms of tan using the formula for converting sin and cos into the tan function:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
First upon reduction we can write,
\[ \Rightarrow {\text{ }}\dfrac{{sin{\text{ }}50^\circ }}{{cos{\text{ }}50^\circ }} + {\text{ }}\dfrac{{sin{\text{ }}20^\circ }}{{cos{\text{ }}20^\circ }} + {\text{ }}tan{\text{ }}50^\circ \]
Then upon using the formula we will write,
$ \Rightarrow tan{\text{ }}50^\circ {\text{ }} + {\text{ }}tan{\text{ }}20^\circ {\text{ }} + {\text{ }}tan{\text{ }}50^\circ $
\[\; \Rightarrow tan{\text{ }}20^\circ {\text{ }} + {\text{ }}2{\text{ }}tan{\text{ }}50^\circ \]
Therefore, option (C) is correct.
Note:
It is important to remember the complementary angle formula if we want to change the trigonometric ratios like sin and cos to each other.
The formulae are given below: (also used in the question)
\[sin(\theta ) = cos({90^o} - \theta )\]
\[cos(\theta ) = sin({90^o} - \theta )\]
Similar formulae can be written for tan and cot , and sec and cosec , they are also mentioned below:
\[
tan(\theta ) = cot({90^o} - \theta ) \\
cot(\theta ) = tan({90^o} - \theta ) \\
\]
\[ sec(\theta ) = csc({90^o} - \theta ) \\
csc(\theta ) = sec({90^o} - \theta ) \\
\]
$\sin \theta = \cos (90 - \theta )$
$\cos \theta = \sin (90 - \theta )$
We will first express the first term in terms of cos and sin and then solve it further.
Complete step by step answer:
We are given the expression:
$\sec {\text{ }}{50^ \circ } + \tan {\text{ }}{50^ \circ }$
As $\sec \theta = \dfrac{1}{{\cos \theta }}$
$ = \dfrac{1}{{\cos {{50}^ \circ }}} + \tan {\text{ }}{50^ \circ }$
Multiplying numerator and denominator of the first term by $\cos {20^o}$ we get,
\[ \Rightarrow \left[ {\dfrac{{cos{\text{ }}20^\circ }}{{cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
$\cos {20^o}$ can be written as $\sin {70^o}$ from the formula $\cos \theta = \sin (90 - \theta )$, we can thus write,
\[ \Rightarrow \left[ {\dfrac{{sin{\text{ }}70^\circ }}{{cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
\[ \Rightarrow \left[ {\dfrac{{sin\left( {50^\circ {\text{ }} + {\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}}{\text{ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
Using the compound formula : $\sin (A + B) = \sin A\cos B + \cos A\sin B$
\[ \Rightarrow \left[ {\dfrac{{\left( {sin{\text{ }}50^\circ {\text{ }}cos{\text{ }}20^\circ {\text{ }} + {\text{ }}cos{\text{ }}50^\circ {\text{ }}sin{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
\[ \Rightarrow {\text{ }}\dfrac{{\left( {sin{\text{ }}50^\circ {\text{ }}cos{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}} + {\text{ }}\dfrac{{\left( {cos{\text{ }}50^\circ {\text{ }}sin{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}} + {\text{ }}tan{\text{ }}50^\circ \]
The first two expression will now be reduced first by cancelling the common factors present in the numerator and the denominator and then it will be written in the terms of tan using the formula for converting sin and cos into the tan function:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
First upon reduction we can write,
\[ \Rightarrow {\text{ }}\dfrac{{sin{\text{ }}50^\circ }}{{cos{\text{ }}50^\circ }} + {\text{ }}\dfrac{{sin{\text{ }}20^\circ }}{{cos{\text{ }}20^\circ }} + {\text{ }}tan{\text{ }}50^\circ \]
Then upon using the formula we will write,
$ \Rightarrow tan{\text{ }}50^\circ {\text{ }} + {\text{ }}tan{\text{ }}20^\circ {\text{ }} + {\text{ }}tan{\text{ }}50^\circ $
\[\; \Rightarrow tan{\text{ }}20^\circ {\text{ }} + {\text{ }}2{\text{ }}tan{\text{ }}50^\circ \]
Therefore, option (C) is correct.
Note:
It is important to remember the complementary angle formula if we want to change the trigonometric ratios like sin and cos to each other.
The formulae are given below: (also used in the question)
\[sin(\theta ) = cos({90^o} - \theta )\]
\[cos(\theta ) = sin({90^o} - \theta )\]
Similar formulae can be written for tan and cot , and sec and cosec , they are also mentioned below:
\[
tan(\theta ) = cot({90^o} - \theta ) \\
cot(\theta ) = tan({90^o} - \theta ) \\
\]
\[ sec(\theta ) = csc({90^o} - \theta ) \\
csc(\theta ) = sec({90^o} - \theta ) \\
\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

