
The value of $\sec {\text{ }}{50^ \circ } + \tan {\text{ }}{50^ \circ }$ is equal to
A) $\tan {\text{ }}{20^ \circ } + \tan {\text{ }}{50^ \circ }$
B) $2\tan {\text{ }}{20^ \circ } + \tan {\text{ }}{50^ \circ }$
C) $\tan {\text{ }}{20^ \circ } + 2\tan {\text{ }}{50^ \circ }$
D) $2\tan {\text{ }}{20^ \circ } + 2\tan {\text{ }}{50^ \circ }$
Answer
510.3k+ views
Hint: We have to solve the given trigonometric expression. The expression is the sum of sec and tan functions, although we know the standard values of trigonometric functions, the degree which is asked is not a standard degree which means we have to use another method to find the solution. We will use the formulae:
$\sin \theta = \cos (90 - \theta )$
$\cos \theta = \sin (90 - \theta )$
We will first express the first term in terms of cos and sin and then solve it further.
Complete step by step answer:
We are given the expression:
$\sec {\text{ }}{50^ \circ } + \tan {\text{ }}{50^ \circ }$
As $\sec \theta = \dfrac{1}{{\cos \theta }}$
$ = \dfrac{1}{{\cos {{50}^ \circ }}} + \tan {\text{ }}{50^ \circ }$
Multiplying numerator and denominator of the first term by $\cos {20^o}$ we get,
\[ \Rightarrow \left[ {\dfrac{{cos{\text{ }}20^\circ }}{{cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
$\cos {20^o}$ can be written as $\sin {70^o}$ from the formula $\cos \theta = \sin (90 - \theta )$, we can thus write,
\[ \Rightarrow \left[ {\dfrac{{sin{\text{ }}70^\circ }}{{cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
\[ \Rightarrow \left[ {\dfrac{{sin\left( {50^\circ {\text{ }} + {\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}}{\text{ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
Using the compound formula : $\sin (A + B) = \sin A\cos B + \cos A\sin B$
\[ \Rightarrow \left[ {\dfrac{{\left( {sin{\text{ }}50^\circ {\text{ }}cos{\text{ }}20^\circ {\text{ }} + {\text{ }}cos{\text{ }}50^\circ {\text{ }}sin{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
\[ \Rightarrow {\text{ }}\dfrac{{\left( {sin{\text{ }}50^\circ {\text{ }}cos{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}} + {\text{ }}\dfrac{{\left( {cos{\text{ }}50^\circ {\text{ }}sin{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}} + {\text{ }}tan{\text{ }}50^\circ \]
The first two expression will now be reduced first by cancelling the common factors present in the numerator and the denominator and then it will be written in the terms of tan using the formula for converting sin and cos into the tan function:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
First upon reduction we can write,
\[ \Rightarrow {\text{ }}\dfrac{{sin{\text{ }}50^\circ }}{{cos{\text{ }}50^\circ }} + {\text{ }}\dfrac{{sin{\text{ }}20^\circ }}{{cos{\text{ }}20^\circ }} + {\text{ }}tan{\text{ }}50^\circ \]
Then upon using the formula we will write,
$ \Rightarrow tan{\text{ }}50^\circ {\text{ }} + {\text{ }}tan{\text{ }}20^\circ {\text{ }} + {\text{ }}tan{\text{ }}50^\circ $
\[\; \Rightarrow tan{\text{ }}20^\circ {\text{ }} + {\text{ }}2{\text{ }}tan{\text{ }}50^\circ \]
Therefore, option (C) is correct.
Note:
It is important to remember the complementary angle formula if we want to change the trigonometric ratios like sin and cos to each other.
The formulae are given below: (also used in the question)
\[sin(\theta ) = cos({90^o} - \theta )\]
\[cos(\theta ) = sin({90^o} - \theta )\]
Similar formulae can be written for tan and cot , and sec and cosec , they are also mentioned below:
\[
tan(\theta ) = cot({90^o} - \theta ) \\
cot(\theta ) = tan({90^o} - \theta ) \\
\]
\[ sec(\theta ) = csc({90^o} - \theta ) \\
csc(\theta ) = sec({90^o} - \theta ) \\
\]
$\sin \theta = \cos (90 - \theta )$
$\cos \theta = \sin (90 - \theta )$
We will first express the first term in terms of cos and sin and then solve it further.
Complete step by step answer:
We are given the expression:
$\sec {\text{ }}{50^ \circ } + \tan {\text{ }}{50^ \circ }$
As $\sec \theta = \dfrac{1}{{\cos \theta }}$
$ = \dfrac{1}{{\cos {{50}^ \circ }}} + \tan {\text{ }}{50^ \circ }$
Multiplying numerator and denominator of the first term by $\cos {20^o}$ we get,
\[ \Rightarrow \left[ {\dfrac{{cos{\text{ }}20^\circ }}{{cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
$\cos {20^o}$ can be written as $\sin {70^o}$ from the formula $\cos \theta = \sin (90 - \theta )$, we can thus write,
\[ \Rightarrow \left[ {\dfrac{{sin{\text{ }}70^\circ }}{{cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
\[ \Rightarrow \left[ {\dfrac{{sin\left( {50^\circ {\text{ }} + {\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}}{\text{ }}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
Using the compound formula : $\sin (A + B) = \sin A\cos B + \cos A\sin B$
\[ \Rightarrow \left[ {\dfrac{{\left( {sin{\text{ }}50^\circ {\text{ }}cos{\text{ }}20^\circ {\text{ }} + {\text{ }}cos{\text{ }}50^\circ {\text{ }}sin{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}}} \right]{\text{ }} + {\text{ }}tan{\text{ }}50^\circ \]
\[ \Rightarrow {\text{ }}\dfrac{{\left( {sin{\text{ }}50^\circ {\text{ }}cos{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}} + {\text{ }}\dfrac{{\left( {cos{\text{ }}50^\circ {\text{ }}sin{\text{ }}20^\circ } \right)}}{{\left( {cos{\text{ }}20^\circ {\text{ }}cos{\text{ }}50^\circ } \right)}} + {\text{ }}tan{\text{ }}50^\circ \]
The first two expression will now be reduced first by cancelling the common factors present in the numerator and the denominator and then it will be written in the terms of tan using the formula for converting sin and cos into the tan function:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
First upon reduction we can write,
\[ \Rightarrow {\text{ }}\dfrac{{sin{\text{ }}50^\circ }}{{cos{\text{ }}50^\circ }} + {\text{ }}\dfrac{{sin{\text{ }}20^\circ }}{{cos{\text{ }}20^\circ }} + {\text{ }}tan{\text{ }}50^\circ \]
Then upon using the formula we will write,
$ \Rightarrow tan{\text{ }}50^\circ {\text{ }} + {\text{ }}tan{\text{ }}20^\circ {\text{ }} + {\text{ }}tan{\text{ }}50^\circ $
\[\; \Rightarrow tan{\text{ }}20^\circ {\text{ }} + {\text{ }}2{\text{ }}tan{\text{ }}50^\circ \]
Therefore, option (C) is correct.
Note:
It is important to remember the complementary angle formula if we want to change the trigonometric ratios like sin and cos to each other.
The formulae are given below: (also used in the question)
\[sin(\theta ) = cos({90^o} - \theta )\]
\[cos(\theta ) = sin({90^o} - \theta )\]
Similar formulae can be written for tan and cot , and sec and cosec , they are also mentioned below:
\[
tan(\theta ) = cot({90^o} - \theta ) \\
cot(\theta ) = tan({90^o} - \theta ) \\
\]
\[ sec(\theta ) = csc({90^o} - \theta ) \\
csc(\theta ) = sec({90^o} - \theta ) \\
\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

