
The value of ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ in the interval $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$ equals.
Answer
570.6k+ views
Hint: To solve this question we will only solve and keep simplifying the brackets by using value of standard trigonometric values and inverse trigonometric values. After the appropriate simplification, we will expand the summation expression and hence, we will end up with ${{\sec }^{-1}}(1)$, which we know is equals to 0.
Complete step-by-step answer:
Now, we have ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ and we have to find its value in the interval of $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$.
So, to get the value we will solve the summation and simplify the brackets.
Now, ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$
We can write above expression as
${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right) \right)} \right]$
We know that, $\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta $
So, we can write $\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ as $-cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right) \right)} \right]$
We know that, $\sec x=\dfrac{1}{\cos x}$ and $cosecx=\dfrac{1}{sinx}$
So, we can write $\sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)$ as $\dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)}$ and $cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$ as $\dfrac{1}{sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)}$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
Multiplying, both numerator and denominator of summation by 2, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
We know that, $2\sin x\cos x=\sin 2x$ ,
So, we can write denominator $2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$ as $sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
On simplifying, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]$
Or, ${{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]$
on solving, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+k\pi +\pi \right)} \right)} \right]$
On re-arranging, we get
\[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+\pi (k+1) \right)} \right)} \right]\]
We know that $\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta $
So, we can write \[sin\left( \dfrac{\pi }{6}+\pi (k+1) \right)\], as \[{{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right)\]
Also, we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$
So, we can write \[{{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right)\] as \[\dfrac{{{(-1)}^{(k+1)}}}{2}\]
So, we have \[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\dfrac{{{(-1)}^{(k+1)}}}{2}} \right)} \right]\]
On solving, we get
\[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{{{(-1)}^{(k+1)}}} \right)} \right]\]
Or, \[{{\sec }^{-1}}\left[ -1\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)} \right]\]
Now, on expanding \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}\], we get \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1+1-1+1-1+1-1+1-1+1-1\]
On simplifying, we get \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1\]
So, we have \[{{\sec }^{-1}}\left[ -1\times -1 \right]\]
Or, \[{{\sec }^{-1}}\left[ 1 \right]\]
We know that \[{{\sec }^{-1}}\left[ 1 \right]=0\]
So, value of ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ in the interval $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$ equals to 0.
Note: To, solve such question one must know the inverse trigonometric function properties such as \[{{\sec }^{-1}}\left[ 1 \right]=0\] and trigonometric identities such as $\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta $, $\sec x=\dfrac{1}{\cos x}$,$cosecx=\dfrac{1}{sinx}$ and very important $\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta $ and one must also know how to open summation function. Try not to make any silly mistake as this will make the final answer wrong.
Complete step-by-step answer:
Now, we have ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ and we have to find its value in the interval of $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$.
So, to get the value we will solve the summation and simplify the brackets.
Now, ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$
We can write above expression as
${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right) \right)} \right]$
We know that, $\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta $
So, we can write $\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ as $-cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right) \right)} \right]$
We know that, $\sec x=\dfrac{1}{\cos x}$ and $cosecx=\dfrac{1}{sinx}$
So, we can write $\sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)$ as $\dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)}$ and $cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$ as $\dfrac{1}{sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)}$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
Multiplying, both numerator and denominator of summation by 2, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
We know that, $2\sin x\cos x=\sin 2x$ ,
So, we can write denominator $2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$ as $sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
On simplifying, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]$
Or, ${{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]$
on solving, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+k\pi +\pi \right)} \right)} \right]$
On re-arranging, we get
\[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+\pi (k+1) \right)} \right)} \right]\]
We know that $\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta $
So, we can write \[sin\left( \dfrac{\pi }{6}+\pi (k+1) \right)\], as \[{{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right)\]
Also, we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$
So, we can write \[{{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right)\] as \[\dfrac{{{(-1)}^{(k+1)}}}{2}\]
So, we have \[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\dfrac{{{(-1)}^{(k+1)}}}{2}} \right)} \right]\]
On solving, we get
\[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{{{(-1)}^{(k+1)}}} \right)} \right]\]
Or, \[{{\sec }^{-1}}\left[ -1\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)} \right]\]
Now, on expanding \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}\], we get \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1+1-1+1-1+1-1+1-1+1-1\]
On simplifying, we get \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1\]
So, we have \[{{\sec }^{-1}}\left[ -1\times -1 \right]\]
Or, \[{{\sec }^{-1}}\left[ 1 \right]\]
We know that \[{{\sec }^{-1}}\left[ 1 \right]=0\]
So, value of ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ in the interval $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$ equals to 0.
Note: To, solve such question one must know the inverse trigonometric function properties such as \[{{\sec }^{-1}}\left[ 1 \right]=0\] and trigonometric identities such as $\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta $, $\sec x=\dfrac{1}{\cos x}$,$cosecx=\dfrac{1}{sinx}$ and very important $\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta $ and one must also know how to open summation function. Try not to make any silly mistake as this will make the final answer wrong.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

