
The value of ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ in the interval $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$ equals.
Answer
585.9k+ views
Hint: To solve this question we will only solve and keep simplifying the brackets by using value of standard trigonometric values and inverse trigonometric values. After the appropriate simplification, we will expand the summation expression and hence, we will end up with ${{\sec }^{-1}}(1)$, which we know is equals to 0.
Complete step-by-step answer:
Now, we have ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ and we have to find its value in the interval of $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$.
So, to get the value we will solve the summation and simplify the brackets.
Now, ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$
We can write above expression as
${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right) \right)} \right]$
We know that, $\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta $
So, we can write $\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ as $-cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right) \right)} \right]$
We know that, $\sec x=\dfrac{1}{\cos x}$ and $cosecx=\dfrac{1}{sinx}$
So, we can write $\sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)$ as $\dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)}$ and $cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$ as $\dfrac{1}{sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)}$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
Multiplying, both numerator and denominator of summation by 2, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
We know that, $2\sin x\cos x=\sin 2x$ ,
So, we can write denominator $2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$ as $sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
On simplifying, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]$
Or, ${{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]$
on solving, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+k\pi +\pi \right)} \right)} \right]$
On re-arranging, we get
\[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+\pi (k+1) \right)} \right)} \right]\]
We know that $\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta $
So, we can write \[sin\left( \dfrac{\pi }{6}+\pi (k+1) \right)\], as \[{{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right)\]
Also, we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$
So, we can write \[{{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right)\] as \[\dfrac{{{(-1)}^{(k+1)}}}{2}\]
So, we have \[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\dfrac{{{(-1)}^{(k+1)}}}{2}} \right)} \right]\]
On solving, we get
\[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{{{(-1)}^{(k+1)}}} \right)} \right]\]
Or, \[{{\sec }^{-1}}\left[ -1\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)} \right]\]
Now, on expanding \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}\], we get \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1+1-1+1-1+1-1+1-1+1-1\]
On simplifying, we get \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1\]
So, we have \[{{\sec }^{-1}}\left[ -1\times -1 \right]\]
Or, \[{{\sec }^{-1}}\left[ 1 \right]\]
We know that \[{{\sec }^{-1}}\left[ 1 \right]=0\]
So, value of ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ in the interval $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$ equals to 0.
Note: To, solve such question one must know the inverse trigonometric function properties such as \[{{\sec }^{-1}}\left[ 1 \right]=0\] and trigonometric identities such as $\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta $, $\sec x=\dfrac{1}{\cos x}$,$cosecx=\dfrac{1}{sinx}$ and very important $\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta $ and one must also know how to open summation function. Try not to make any silly mistake as this will make the final answer wrong.
Complete step-by-step answer:
Now, we have ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ and we have to find its value in the interval of $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$.
So, to get the value we will solve the summation and simplify the brackets.
Now, ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$
We can write above expression as
${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right) \right)} \right]$
We know that, $\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta $
So, we can write $\sec \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2}+\dfrac{\pi }{2} \right)$ as $-cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right) \right)} \right]$
We know that, $\sec x=\dfrac{1}{\cos x}$ and $cosecx=\dfrac{1}{sinx}$
So, we can write $\sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)$ as $\dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)}$ and $cosec\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$ as $\dfrac{1}{sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)}$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
Multiplying, both numerator and denominator of summation by 2, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
We know that, $2\sin x\cos x=\sin 2x$ ,
So, we can write denominator $2\cos \left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)sin\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$ as $sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)$
So, we have ${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin2\left( \dfrac{7\pi }{12}+k\dfrac{\pi }{2} \right)} \right)} \right]$
On simplifying, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]$
Or, ${{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{7\pi }{6}+k\pi \right)} \right)} \right]$
on solving, we get
${{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+k\pi +\pi \right)} \right)} \right]$
On re-arranging, we get
\[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{sin\left( \dfrac{\pi }{6}+\pi (k+1) \right)} \right)} \right]\]
We know that $\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta $
So, we can write \[sin\left( \dfrac{\pi }{6}+\pi (k+1) \right)\], as \[{{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right)\]
Also, we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$
So, we can write \[{{(-1)}^{(k+1)}}sin\left( \dfrac{\pi }{6} \right)\] as \[\dfrac{{{(-1)}^{(k+1)}}}{2}\]
So, we have \[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{1}{\dfrac{{{(-1)}^{(k+1)}}}{2}} \right)} \right]\]
On solving, we get
\[{{\sec }^{-1}}\left[ -\dfrac{1}{2}\sum\limits_{k=0}^{10}{\left( \dfrac{2}{{{(-1)}^{(k+1)}}} \right)} \right]\]
Or, \[{{\sec }^{-1}}\left[ -1\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)} \right]\]
Now, on expanding \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}\], we get \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1+1-1+1-1+1-1+1-1+1-1\]
On simplifying, we get \[\sum\limits_{k=0}^{10}{\left( \dfrac{1}{{{(-1)}^{(k+1)}}} \right)}=-1\]
So, we have \[{{\sec }^{-1}}\left[ -1\times -1 \right]\]
Or, \[{{\sec }^{-1}}\left[ 1 \right]\]
We know that \[{{\sec }^{-1}}\left[ 1 \right]=0\]
So, value of ${{\sec }^{-1}}\left[ \dfrac{1}{4}\sum\limits_{k=0}^{10}{\left( \sec \left( \dfrac{7\pi }{12}+\dfrac{k\pi }{2} \right)\sec \left( \dfrac{7\pi }{12}+(k+1)\dfrac{\pi }{2} \right) \right)} \right]$ in the interval $\left[ -\dfrac{\pi }{4},\dfrac{3\pi }{4} \right]$ equals to 0.
Note: To, solve such question one must know the inverse trigonometric function properties such as \[{{\sec }^{-1}}\left[ 1 \right]=0\] and trigonometric identities such as $\sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta $, $\sec x=\dfrac{1}{\cos x}$,$cosecx=\dfrac{1}{sinx}$ and very important $\sin (k\pi +\theta )={{(-1)}^{k}}\sin \theta $ and one must also know how to open summation function. Try not to make any silly mistake as this will make the final answer wrong.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

