Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The value of r which does not satisfy \[r - 4 = 0\] is
A.4 B.- 4 C. 8 D.0

Answer
VerifiedVerified
596.7k+ views
Hint: Try hit and trial method, as the question says it has multiple correct options. We can directly put the options in the equation $r - 4 = 0.$

Complete step-by-step answer:
The given equation is $r - 4 = 0$ (1)
We will now solve for all the values of r given to us as options.
$\therefore $ for $r = 4$
We have in ${\text{eq}}$① is
$r - 4 - 0,$
$4 - 4 = 0.\;\; = 0.$
Hence it satisfies the equation \[r - 4 = \underline 0 \]
For $r = - 4$
We have in ${\text{eq}}$ ① is
$r - 4 = 0$
$ \Rightarrow - 4 - 4 = - 8. \ne 0$
Hence, it does not satisfy the equation $r - 4 = 0.$
For $r = 8$
We have in equation ① is
$r - 4 = 0$
$ \Rightarrow 8 - 4 = 4 \ne 0$
Hence, it does not satisfy the equation $r - 4 = 0$
And for ${\text{r}} = 0.$
We have the equation ① is.
$r = 4 = 0.$
$ \Rightarrow 0 - 4 = - 4 \ne 0.$
Hence, it does not satisfy the equation $r - 4 = 0$
$\therefore $ the values of r which does not satisfy $r - 4 = 0$ are $ - 4,8,0.$

Note: In this type of multiple type answer, carefully read the given option and go for the hit and trial method. It works for the maximum number of times.

WhatsApp Banner