
The value of \[^n{C_1}{ + ^{n + 1}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}\] is equal
(This question has multiple correct options)
A) \[^{m + n}{C_{n - 1}}\]
B) \[^{m + n}{C_{n + 1}}\]
C) \[^m{C_1}{ + ^{m + 1}}{C_2}{ + ^{m + 2}}{C_3}...{ + ^{n + m - 1}}{C_n}\]
D) \[^{m + n}{C_m} - 1\]
Answer
574.2k+ views
Hint:Here we use the property of combinations that \[^n{C_r}{ + ^n}{C_{r + 1}}{ = ^{n + 1}}{C_{r + 1}}\]. Add and subtract the value \[^n{C_0}\]from the given equation. Combine the pairs according to the property which will reduce a value in each step. Apply the property to the terms having the same subscript until we reach the end of the terms.
Complete step-by-step answer:
We are given the equation \[^n{C_1}{ + ^{n + 1}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}\].
Add and subtract the value \[^n{C_0}\] from the equation
\[{ \Rightarrow ^n}{C_0}{ + ^n}{C_1}{ + ^{n + 1}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}{ - ^n}{C_0} ………..… (1)\]
Now we know from the property that \[^n{C_r}{ + ^n}{C_{r + 1}}{ = ^{n + 1}}{C_{r + 1}}\]
Substituting the value of \[n = n,r = 0\] in the property
We can write \[^n{C_0}{ + ^n}{C_{0 + 1}}{ = ^{n + 1}}{C_{0 + 1}}\]
Calculate the terms in subscript and superscript.
\[{ \Rightarrow ^n}{C_0}{ + ^n}{C_1}{ = ^{n + 1}}{C_1} ……..… (2)\]
Substitute the value from equation (2) in equation (1)
\[{ \Rightarrow ^{n + 1}}{C_1}{ + ^{n + 1}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}{ - ^n}{C_0} ……….… (3)\]
Now again we know from the property that \[^n{C_r}{ + ^n}{C_{r + 1}}{ = ^{n + 1}}{C_{r + 1}}\]
Substituting the value of \[n = n + 1,r = 1\]
We can write \[^{n + 1}{C_1}{ + ^{n + 1}}{C_{1 + 1}}{ = ^{n + 1 + 1}}{C_{1 + 1}}\]
Calculate the terms in subscript and superscript.
\[{ \Rightarrow ^{n + 1}}{C_1}{ + ^{n + 1}}{C_2}{ = ^{n + 2}}{C_2} …...… (4)\]
Substitute the value from equation (4) in equation (3)
\[{ \Rightarrow ^{n + 2}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}{ - ^n}{C_0}\]
Similarly, \[^{n + 2}{C_2}{ + ^{n + 2}}{C_3}{ = ^{n + 3}}{C_3}\]
So, the equation becomes
\[{ \Rightarrow ^{n + 3}}{C_3} + ...{ + ^{n + m - 1}}{C_m}{ - ^n}{C_0}\]
Proceeding in this way we can write from the property.
\[^{n + m - 1}{C_{m - 1}}{ + ^{n + m - 1}}{C_{m - 1 + 1}}{ = ^{n + m}}{C_m}\]
This will be the last term of the equation. So the equation becomes
\[{ \Rightarrow ^{n + m}}{C_m}{ - ^n}{C_0}\]
We know the value of \[^n{C_0} = 1\]
Substitute the value of \[^n{C_0} = 1\] in the equation
\[{ \Rightarrow ^{n + m}}{C_m} - 1\]
Therefore, value of \[^n{C_1}{ + ^{n + 1}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}\] is \[^{n + m}{C_m} - 1\]
Note:Students might try to open up each combination using the formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]which will result in a sum which is difficult to calculate. It is advised to use the property which converts the sum of two terms into one term and we move in the same manner until we reach the end.Students are advised to perform the first two sums of combinations step by step in order to understand the pattern.
Complete step-by-step answer:
We are given the equation \[^n{C_1}{ + ^{n + 1}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}\].
Add and subtract the value \[^n{C_0}\] from the equation
\[{ \Rightarrow ^n}{C_0}{ + ^n}{C_1}{ + ^{n + 1}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}{ - ^n}{C_0} ………..… (1)\]
Now we know from the property that \[^n{C_r}{ + ^n}{C_{r + 1}}{ = ^{n + 1}}{C_{r + 1}}\]
Substituting the value of \[n = n,r = 0\] in the property
We can write \[^n{C_0}{ + ^n}{C_{0 + 1}}{ = ^{n + 1}}{C_{0 + 1}}\]
Calculate the terms in subscript and superscript.
\[{ \Rightarrow ^n}{C_0}{ + ^n}{C_1}{ = ^{n + 1}}{C_1} ……..… (2)\]
Substitute the value from equation (2) in equation (1)
\[{ \Rightarrow ^{n + 1}}{C_1}{ + ^{n + 1}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}{ - ^n}{C_0} ……….… (3)\]
Now again we know from the property that \[^n{C_r}{ + ^n}{C_{r + 1}}{ = ^{n + 1}}{C_{r + 1}}\]
Substituting the value of \[n = n + 1,r = 1\]
We can write \[^{n + 1}{C_1}{ + ^{n + 1}}{C_{1 + 1}}{ = ^{n + 1 + 1}}{C_{1 + 1}}\]
Calculate the terms in subscript and superscript.
\[{ \Rightarrow ^{n + 1}}{C_1}{ + ^{n + 1}}{C_2}{ = ^{n + 2}}{C_2} …...… (4)\]
Substitute the value from equation (4) in equation (3)
\[{ \Rightarrow ^{n + 2}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}{ - ^n}{C_0}\]
Similarly, \[^{n + 2}{C_2}{ + ^{n + 2}}{C_3}{ = ^{n + 3}}{C_3}\]
So, the equation becomes
\[{ \Rightarrow ^{n + 3}}{C_3} + ...{ + ^{n + m - 1}}{C_m}{ - ^n}{C_0}\]
Proceeding in this way we can write from the property.
\[^{n + m - 1}{C_{m - 1}}{ + ^{n + m - 1}}{C_{m - 1 + 1}}{ = ^{n + m}}{C_m}\]
This will be the last term of the equation. So the equation becomes
\[{ \Rightarrow ^{n + m}}{C_m}{ - ^n}{C_0}\]
We know the value of \[^n{C_0} = 1\]
Substitute the value of \[^n{C_0} = 1\] in the equation
\[{ \Rightarrow ^{n + m}}{C_m} - 1\]
Therefore, value of \[^n{C_1}{ + ^{n + 1}}{C_2}{ + ^{n + 2}}{C_3} + ...{ + ^{n + m - 1}}{C_m}\] is \[^{n + m}{C_m} - 1\]
Note:Students might try to open up each combination using the formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]which will result in a sum which is difficult to calculate. It is advised to use the property which converts the sum of two terms into one term and we move in the same manner until we reach the end.Students are advised to perform the first two sums of combinations step by step in order to understand the pattern.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

