
The value of \[{}^n{C_0} - {}^n{C_1} + {}^n{C_2} - ...... + {( - 1)^{{n^n}}}{C_n}\]is:
(A) 1
(B) 0
(c) 2
(c) n
Answer
602.4k+ views
Hint- Proceed the solution with the help of binomial expansion. The binomial expansion of ${(1 - x)^n} = {}^n{C_0} + {}^n{C_1}{( - x)^1} + {}^n{C_2}{( - x)^2} + .......... + {}^n{C_n}{( - x)^n}$. If however we remove the variable x then we can get the series of binomial coefficients.
Complete step-by-step solution -
The binomial expansion of ${(1 - x)^n} = {}^n{C_0} + {}^n{C_1}{( - x)^1} + {}^n{C_2}{( - x)^2} + .......... + {}^n{C_n}{( - x)^n}$.
Put x=1 in this expansion.
Since, we know that ${(1 - x)^n} = {}^n{C_0} + {}^n{C_1}{( - x)^1} + {}^n{C_2}{( - x)^2} + .......... + {}^n{C_n}{( - x)^n}$
Putting x=1 on both sides,
${(1 - 1)^n} = {}^n{C_0} + {}^n{C_1}{( - 1)^1} + {}^n{C_2}{( - 1)^2} + .......... + {}^n{C_n}{( - 1)^n}$$ \Rightarrow 0 = {}^n{C_0} - {}^n{C_1} + {}^n{C_2} - .......... + {( - 1)^n}{}^n{C_n}$
$ \Rightarrow {}^n{C_0} - {}^n{C_1} + {}^n{C_2} - .......... + {( - 1)^n}{}^n{C_n} = 0$
Note- Binomial theorem is a fast method of expanding a binomial expression that has been raised to some large power.
we got the expansion of ${(1 - x)^n}$ using the expansion of
${(1 + x)^n} = $ ${}^n{C_0} + {}^n{C_1}{(x)^1} + {}^n{C_2}{(x)^2} + .......... + {}^n{C_n}{(x)^n}$, as ${(1 - x)^n}$= ${(1 + ( - x))^n}$.
The expansion can also be written as ${(1 + x)^n} = $ $1 + \dfrac{n}{{1!}}x + \dfrac{{n(n - 1)}}{{2!}}{x^2} + \dfrac{{n(n - 1)(n - 2)}}{{3!}}{x^3} + ........$
Complete step-by-step solution -
The binomial expansion of ${(1 - x)^n} = {}^n{C_0} + {}^n{C_1}{( - x)^1} + {}^n{C_2}{( - x)^2} + .......... + {}^n{C_n}{( - x)^n}$.
Put x=1 in this expansion.
Since, we know that ${(1 - x)^n} = {}^n{C_0} + {}^n{C_1}{( - x)^1} + {}^n{C_2}{( - x)^2} + .......... + {}^n{C_n}{( - x)^n}$
Putting x=1 on both sides,
${(1 - 1)^n} = {}^n{C_0} + {}^n{C_1}{( - 1)^1} + {}^n{C_2}{( - 1)^2} + .......... + {}^n{C_n}{( - 1)^n}$$ \Rightarrow 0 = {}^n{C_0} - {}^n{C_1} + {}^n{C_2} - .......... + {( - 1)^n}{}^n{C_n}$
$ \Rightarrow {}^n{C_0} - {}^n{C_1} + {}^n{C_2} - .......... + {( - 1)^n}{}^n{C_n} = 0$
Note- Binomial theorem is a fast method of expanding a binomial expression that has been raised to some large power.
we got the expansion of ${(1 - x)^n}$ using the expansion of
${(1 + x)^n} = $ ${}^n{C_0} + {}^n{C_1}{(x)^1} + {}^n{C_2}{(x)^2} + .......... + {}^n{C_n}{(x)^n}$, as ${(1 - x)^n}$= ${(1 + ( - x))^n}$.
The expansion can also be written as ${(1 + x)^n} = $ $1 + \dfrac{n}{{1!}}x + \dfrac{{n(n - 1)}}{{2!}}{x^2} + \dfrac{{n(n - 1)(n - 2)}}{{3!}}{x^3} + ........$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

