Answer
Verified
428.4k+ views
Hint: We will use the sum of squares of n natural numbers given by $\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$, the sum of cubes of n natural numbers given by ${\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}$ and the sum of n natural numbers raise to the power 6 given by $\dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)$. We will simplify these sum of the series after putting them in the required equation $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}$. Upon further simplification, we will get the value of this function and we will check which of the solutions matches the obtained answer.
Complete step-by-step answer:
We are required to find the value of $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}$.
We know that the sum of squares of first n natural numbers is given by: $\sum {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $
Similarly, the sum of the cubes of n natural numbers is given by: $\sum {{n^3} = } {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}$ and the sum of n natural numbers raise to the power 6 is given by:$\sum {{n^6} = } \dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)$
Substituting these values in $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}$, we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2}}}{{\dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)}}$
Simplifying this equation, we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2}}}{{\dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{1}{6}\left( {2{n^3} + 3{n^2} + n} \right)\dfrac{1}{4}\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{\dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)}}$
Upon simplifying the numerator, we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{1}{{24}}\left( {2{n^7} + 4{n^6} + 2{n^5} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right)}}{{\dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)}}$
Taking the constant term $\left( {\dfrac{{\dfrac{1}{{24}}}}{{\dfrac{1}{{42}}}} = \dfrac{{42}}{{24}} = \dfrac{7}{4}} \right)$ out of the limit and taking ${n^7}$ common from both the numerator and the denominator, we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{4}\mathop {\lim }\limits_{n \to \infty } \dfrac{{{n^7}\left( {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right)}}{{{n^7}\left( {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{4}\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right)}}{{\left( {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right)}}$
Applying the limit $n \to \infty $ , we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{4}\left( {\dfrac{2}{6}} \right) = \dfrac{7}{{12}}$ $\left[ {\because {\text{ as n}} \to \infty {\text{ then }}\dfrac{1}{n} \to \dfrac{1}{\infty } = 0} \right]$
Therefore, the value of $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}$ is $\dfrac{7}{{12}}$.
Hence, option (D) is correct.
Note: In such questions, you should know the formula of the sum of the series or expansion used since these are questions which have direct implementation of the standard formulae and are quite easy yet lengthy but you can score well. You can also solve this question by using L’ Hopital’s rule but it would be more time consuming and complicated as well.
Complete step-by-step answer:
We are required to find the value of $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}$.
We know that the sum of squares of first n natural numbers is given by: $\sum {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $
Similarly, the sum of the cubes of n natural numbers is given by: $\sum {{n^3} = } {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}$ and the sum of n natural numbers raise to the power 6 is given by:$\sum {{n^6} = } \dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)$
Substituting these values in $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}$, we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2}}}{{\dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)}}$
Simplifying this equation, we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2}}}{{\dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{1}{6}\left( {2{n^3} + 3{n^2} + n} \right)\dfrac{1}{4}\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{\dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)}}$
Upon simplifying the numerator, we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{1}{{24}}\left( {2{n^7} + 4{n^6} + 2{n^5} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right)}}{{\dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)}}$
Taking the constant term $\left( {\dfrac{{\dfrac{1}{{24}}}}{{\dfrac{1}{{42}}}} = \dfrac{{42}}{{24}} = \dfrac{7}{4}} \right)$ out of the limit and taking ${n^7}$ common from both the numerator and the denominator, we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{4}\mathop {\lim }\limits_{n \to \infty } \dfrac{{{n^7}\left( {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right)}}{{{n^7}\left( {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{4}\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right)}}{{\left( {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right)}}$
Applying the limit $n \to \infty $ , we get
$ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{4}\left( {\dfrac{2}{6}} \right) = \dfrac{7}{{12}}$ $\left[ {\because {\text{ as n}} \to \infty {\text{ then }}\dfrac{1}{n} \to \dfrac{1}{\infty } = 0} \right]$
Therefore, the value of $\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}$ is $\dfrac{7}{{12}}$.
Hence, option (D) is correct.
Note: In such questions, you should know the formula of the sum of the series or expansion used since these are questions which have direct implementation of the standard formulae and are quite easy yet lengthy but you can score well. You can also solve this question by using L’ Hopital’s rule but it would be more time consuming and complicated as well.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE