
The value of \({\log _{\dfrac{1}{{20}}}}40\) is
A. Greater than zero
B. Smaller than zero
C. Greater than zero and smaller than one
D. None of these
Answer
584.1k+ views
Hint: To solve the question given above, we will find out what is the definition of logarithm function. Then, we will look at the general form of logarithm function i.e. \({\log _a}b\).Then, we will use the identity: \({\log _{{a^2}}}b = \dfrac{1}{2}{\log _a}b\) to convert the given logarithm function into other terms. Then, we will determine in which range, the value of the given logarithm function.
Complete step-by-step answer:
Before we solve the question given above, we will first see what a logarithm function is. A logarithm is the power in which a number must be raised in order to get some other number. The logarithm is the inverse function to exponentiation. The general form of logarithm is \({\log _a}b\) .Now, we are given a logarithm. We will assume that its value is x. Thus,
\(x = {\log _{\dfrac{1}{{20}}}}40{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (i)}}\)
Now, we will use an exponential property here, which says that \({a^{ - 1}} = \dfrac{1}{a}\) .Thus, we get:
\(x = {\log _{{{20}^{ - 1}}}}40\)
Now, we will use a logarithm identity in the above question:
\({\log _{{a^2}}}b = \dfrac{1}{2}{\log _a}b\)
Thus, we get:
\(\begin{array}{l}x = - {\log _{20}}40\\x = - {\log _{20}}\left( {20 \times 2} \right)\end{array}\)
Now, we will use \(\log \left( {a \times b} \right) = \log a + \log b\) in above equation. Thus, we will get:
\(\begin{array}{l}x = - \left[ {{{\log }_{20}}20 + {{\log }_{20}}2} \right]\\x = - \left[ {1 + lo{g_{20}}2} \right]\end{array}\)
Now, we will use \({\log _a}b = \dfrac{1}{{{{\log }_b}a}}\) in above question:
\[\begin{array}{l}x = - \left[ {1 + \dfrac{1}{{lo{g_2}20}}} \right]\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{lo{g_2}\left( {4 \times 5} \right)}}} \right]\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{lo{g_2}4 + lo{g_2}5}}} \right]\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{2 + lo{g_2}5}}} \right]{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (ii)}}\end{array}\]
Now, we consider the value of \({\log _2}5\) as y. Thus,
\(y = {\log _2}5{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (iii)}}\)
We use the identity: \({\log _a}b = \dfrac{{{{\log }_{10}}b}}{{{{\log }_{10}}a}}\). Thus, we get:
\(\begin{array}{l} \Rightarrow y = \dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}2}}\\ \Rightarrow y = \dfrac{{{{\log }_{10}}\left( {\dfrac{{10}}{2}} \right)}}{{{{\log }_{10}}2}}\end{array}\)
Now, we will use the identity: \(\log \left( {\dfrac{a}{b}} \right) = \log a - \log b\)
\(\begin{array}{l} \Rightarrow y = \dfrac{{{{\log }_{10}}10 - {{\log }_{10}}2}}{{{{\log }_{10}}2}}\\ \Rightarrow y = \dfrac{{1 - {{\log }_{10}}2}}{{{{\log }_{10}}2}}\end{array}\)
The value of \({\log _{10}}2\) is 0.3010. Thus, we have:
\(\begin{array}{l} \Rightarrow y = \dfrac{{1 - 0.3010}}{{0.3010}}\\ \Rightarrow y = \dfrac{{0.6990}}{{0.3010}}\\ \Rightarrow y = 2.322{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (iv)}}\end{array}\)
From (iii) and (iv), we have:
\({\log _2}5 = 2.322{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (v)}}\)
From (ii) and (v), we have the following equation:
\(\begin{array}{l} \Rightarrow x = - \left[ {1 + \dfrac{1}{{2 + 2.322}}} \right]\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{4.322}}} \right]\\ \Rightarrow x = - \left[ {1 + 0.231} \right]\\ \Rightarrow x = - \left[ {1.231} \right]\\ \Rightarrow x = - 1.231{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (vi)}}\end{array}\)
From (i) and (vi), we can say that:
\(\begin{array}{l}{\log _{\dfrac{1}{{20}}}}40 = - 1.231\\ \Rightarrow {\log _{\dfrac{1}{{20}}}}40 < 0\end{array}\)
Hence, option B is correct.
Note: The alternate method to do this question is shown below.
Let the logarithm be \({\log _a}b\). If a>1 and b>1 then the value of logarithm will always be positive, if a>1 and b<1 then the value of logarithm will always be negative. If a<1 and b<1 then the value of logarithm is positive and if a<1 and b>1 then logarithm gives negative value. In our case a<1 and b>1. So the value of the logarithm will be less than 0.
Complete step-by-step answer:
Before we solve the question given above, we will first see what a logarithm function is. A logarithm is the power in which a number must be raised in order to get some other number. The logarithm is the inverse function to exponentiation. The general form of logarithm is \({\log _a}b\) .Now, we are given a logarithm. We will assume that its value is x. Thus,
\(x = {\log _{\dfrac{1}{{20}}}}40{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (i)}}\)
Now, we will use an exponential property here, which says that \({a^{ - 1}} = \dfrac{1}{a}\) .Thus, we get:
\(x = {\log _{{{20}^{ - 1}}}}40\)
Now, we will use a logarithm identity in the above question:
\({\log _{{a^2}}}b = \dfrac{1}{2}{\log _a}b\)
Thus, we get:
\(\begin{array}{l}x = - {\log _{20}}40\\x = - {\log _{20}}\left( {20 \times 2} \right)\end{array}\)
Now, we will use \(\log \left( {a \times b} \right) = \log a + \log b\) in above equation. Thus, we will get:
\(\begin{array}{l}x = - \left[ {{{\log }_{20}}20 + {{\log }_{20}}2} \right]\\x = - \left[ {1 + lo{g_{20}}2} \right]\end{array}\)
Now, we will use \({\log _a}b = \dfrac{1}{{{{\log }_b}a}}\) in above question:
\[\begin{array}{l}x = - \left[ {1 + \dfrac{1}{{lo{g_2}20}}} \right]\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{lo{g_2}\left( {4 \times 5} \right)}}} \right]\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{lo{g_2}4 + lo{g_2}5}}} \right]\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{2 + lo{g_2}5}}} \right]{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (ii)}}\end{array}\]
Now, we consider the value of \({\log _2}5\) as y. Thus,
\(y = {\log _2}5{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (iii)}}\)
We use the identity: \({\log _a}b = \dfrac{{{{\log }_{10}}b}}{{{{\log }_{10}}a}}\). Thus, we get:
\(\begin{array}{l} \Rightarrow y = \dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}2}}\\ \Rightarrow y = \dfrac{{{{\log }_{10}}\left( {\dfrac{{10}}{2}} \right)}}{{{{\log }_{10}}2}}\end{array}\)
Now, we will use the identity: \(\log \left( {\dfrac{a}{b}} \right) = \log a - \log b\)
\(\begin{array}{l} \Rightarrow y = \dfrac{{{{\log }_{10}}10 - {{\log }_{10}}2}}{{{{\log }_{10}}2}}\\ \Rightarrow y = \dfrac{{1 - {{\log }_{10}}2}}{{{{\log }_{10}}2}}\end{array}\)
The value of \({\log _{10}}2\) is 0.3010. Thus, we have:
\(\begin{array}{l} \Rightarrow y = \dfrac{{1 - 0.3010}}{{0.3010}}\\ \Rightarrow y = \dfrac{{0.6990}}{{0.3010}}\\ \Rightarrow y = 2.322{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (iv)}}\end{array}\)
From (iii) and (iv), we have:
\({\log _2}5 = 2.322{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (v)}}\)
From (ii) and (v), we have the following equation:
\(\begin{array}{l} \Rightarrow x = - \left[ {1 + \dfrac{1}{{2 + 2.322}}} \right]\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{4.322}}} \right]\\ \Rightarrow x = - \left[ {1 + 0.231} \right]\\ \Rightarrow x = - \left[ {1.231} \right]\\ \Rightarrow x = - 1.231{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (vi)}}\end{array}\)
From (i) and (vi), we can say that:
\(\begin{array}{l}{\log _{\dfrac{1}{{20}}}}40 = - 1.231\\ \Rightarrow {\log _{\dfrac{1}{{20}}}}40 < 0\end{array}\)
Hence, option B is correct.
Note: The alternate method to do this question is shown below.
Let the logarithm be \({\log _a}b\). If a>1 and b>1 then the value of logarithm will always be positive, if a>1 and b<1 then the value of logarithm will always be negative. If a<1 and b<1 then the value of logarithm is positive and if a<1 and b>1 then logarithm gives negative value. In our case a<1 and b>1. So the value of the logarithm will be less than 0.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

