
The value of ${{\log }_{10}}2+16{{\log }_{10}}\left( \dfrac{16}{15} \right)+12{{\log }_{10}}\left( \dfrac{25}{24} \right)+7{{\log }_{10}}\left( \dfrac{81}{80} \right)$ is:
(a) 3
(b) 2
(c) 1
(d) 0
Answer
584.7k+ views
Hint: Use the formula given by: \[{{\log }_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n\] to simplify the terms. Now, write the argument of each term as the product of their prime factors and use two different identities of logarithm given by: ${{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n$ and \[{{\log }_{a}}{{m}^{n}}=n{{\log }_{a}}m\] to simplify the terms further. Cancel all the common terms and use the formula: ${{\log }_{a}}a=1$ to get the final answer.
Complete step-by-step answer:
Let us assume the value of the given expression as ‘E’. Therefore,
$E={{\log }_{10}}2+16{{\log }_{10}}\left( \dfrac{16}{15} \right)+12{{\log }_{10}}\left( \dfrac{25}{24} \right)+7{{\log }_{10}}\left( \dfrac{81}{80} \right)$
Using the formula: \[{{\log }_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n\], we get,
$E={{\log }_{10}}2+16{{\log }_{10}}16-16{{\log }_{10}}15+12{{\log }_{10}}25-12{{\log }_{10}}24+7{{\log }_{10}}81-7{{\log }_{10}}80$
Writing the arguments of the logarithm as the products of their primes, we get,
\[\begin{align}
& E={{\log }_{10}}2+16{{\log }_{10}}\left( 2\times 2\times 2\times 2 \right)-16{{\log }_{10}}\left( 3\times 5 \right)+12{{\log }_{10}}\left( {{5}^{2}} \right)-12{{\log }_{10}}\left( 3\times 2\times 2\times 2 \right) \\
& \text{ }+7{{\log }_{10}}\left( 3\times 3\times 3\times 3 \right)-7{{\log }_{10}}\left( 2\times 2\times 2\times 2\times 5 \right) \\
& \Rightarrow E={{\log }_{10}}2+16{{\log }_{10}}\left( {{2}^{4}} \right)-16{{\log }_{10}}\left( 3\times 5 \right)+12{{\log }_{10}}\left( {{5}^{2}} \right)-12{{\log }_{10}}\left( 3\times {{2}^{3}} \right)+7{{\log }_{10}}\left( {{3}^{4}} \right)-7{{\log }_{10}}\left( {{2}^{4}}\times 5 \right) \\
\end{align}\]
Now, using the identity: ${{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n$ and \[{{\log }_{a}}{{m}^{n}}=n{{\log }_{a}}m\], we get,
\[\begin{align}
& E={{\log }_{10}}2+64{{\log }_{10}}2-16{{\log }_{10}}3-16{{\log }_{10}}5+24{{\log }_{10}}5-12{{\log }_{10}}3-36{{\log }_{10}}2+28{{\log }_{10}}3-28{{\log }_{10}}2-7{{\log }_{10}}5 \\
& \Rightarrow E=65{{\log }_{10}}2-64{{\log }_{10}}2-28{{\log }_{10}}3+28{{\log }_{10}}3+24{{\log }_{10}}5-23{{\log }_{10}}5 \\
& \Rightarrow E={{\log }_{10}}2+{{\log }_{10}}5 \\
\end{align}\]
Now, using the identity: ${{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n$, we get,
$\begin{align}
& E={{\log }_{10}}\left( 2\times 5 \right) \\
& \Rightarrow E={{\log }_{10}}\left( 10 \right) \\
\end{align}$
Using the formula: ${{\log }_{a}}a=1$, we have,
$E=1$
Hence, option (c) is the correct answer.
Note: One may note that properties of logarithms used in the above solution are very helpful in simplifying the problem. We do not have to simplify the above expression by calculating the divisions given in the argument of logarithms. It will be a lengthy process and we will need the help of a log table for calculations, which is not available to us. It is also necessary to write the given arguments as the product of primes so that we can use the formula: ${{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n$ for further simplification.
Complete step-by-step answer:
Let us assume the value of the given expression as ‘E’. Therefore,
$E={{\log }_{10}}2+16{{\log }_{10}}\left( \dfrac{16}{15} \right)+12{{\log }_{10}}\left( \dfrac{25}{24} \right)+7{{\log }_{10}}\left( \dfrac{81}{80} \right)$
Using the formula: \[{{\log }_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n\], we get,
$E={{\log }_{10}}2+16{{\log }_{10}}16-16{{\log }_{10}}15+12{{\log }_{10}}25-12{{\log }_{10}}24+7{{\log }_{10}}81-7{{\log }_{10}}80$
Writing the arguments of the logarithm as the products of their primes, we get,
\[\begin{align}
& E={{\log }_{10}}2+16{{\log }_{10}}\left( 2\times 2\times 2\times 2 \right)-16{{\log }_{10}}\left( 3\times 5 \right)+12{{\log }_{10}}\left( {{5}^{2}} \right)-12{{\log }_{10}}\left( 3\times 2\times 2\times 2 \right) \\
& \text{ }+7{{\log }_{10}}\left( 3\times 3\times 3\times 3 \right)-7{{\log }_{10}}\left( 2\times 2\times 2\times 2\times 5 \right) \\
& \Rightarrow E={{\log }_{10}}2+16{{\log }_{10}}\left( {{2}^{4}} \right)-16{{\log }_{10}}\left( 3\times 5 \right)+12{{\log }_{10}}\left( {{5}^{2}} \right)-12{{\log }_{10}}\left( 3\times {{2}^{3}} \right)+7{{\log }_{10}}\left( {{3}^{4}} \right)-7{{\log }_{10}}\left( {{2}^{4}}\times 5 \right) \\
\end{align}\]
Now, using the identity: ${{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n$ and \[{{\log }_{a}}{{m}^{n}}=n{{\log }_{a}}m\], we get,
\[\begin{align}
& E={{\log }_{10}}2+64{{\log }_{10}}2-16{{\log }_{10}}3-16{{\log }_{10}}5+24{{\log }_{10}}5-12{{\log }_{10}}3-36{{\log }_{10}}2+28{{\log }_{10}}3-28{{\log }_{10}}2-7{{\log }_{10}}5 \\
& \Rightarrow E=65{{\log }_{10}}2-64{{\log }_{10}}2-28{{\log }_{10}}3+28{{\log }_{10}}3+24{{\log }_{10}}5-23{{\log }_{10}}5 \\
& \Rightarrow E={{\log }_{10}}2+{{\log }_{10}}5 \\
\end{align}\]
Now, using the identity: ${{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n$, we get,
$\begin{align}
& E={{\log }_{10}}\left( 2\times 5 \right) \\
& \Rightarrow E={{\log }_{10}}\left( 10 \right) \\
\end{align}$
Using the formula: ${{\log }_{a}}a=1$, we have,
$E=1$
Hence, option (c) is the correct answer.
Note: One may note that properties of logarithms used in the above solution are very helpful in simplifying the problem. We do not have to simplify the above expression by calculating the divisions given in the argument of logarithms. It will be a lengthy process and we will need the help of a log table for calculations, which is not available to us. It is also necessary to write the given arguments as the product of primes so that we can use the formula: ${{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n$ for further simplification.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

