
The value of $\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$till $2n$ factors.
A. ${{\left( x-1 \right)}^{2n}}$
B. $2{{\left( x-1 \right)}^{2n+1}}$
C. ${{\left( x-1 \right)}^{2n-1}}$
D. ${{\left( x-1 \right)}^{2n+1}}$
Answer
574.5k+ views
Hint: We can observe that the terms $\omega ,{{\omega }^{2}}$ are in the problem. So we have the relation between the cube roots of $1$ which are $1,\omega ,{{\omega }^{2}}$ as $1+\omega +{{\omega }^{2}}=0$. From this relation we will write the value of $\omega +{{\omega }^{2}}=-1$. We know that ${{\omega }^{3}}=1$, ${{\omega }^{4}}=\omega $, ${{\omega }^{5}}={{\omega }^{2}}$, ${{\omega }^{6}}={{\omega }^{3}}=1$ and the sequence goes on. So, from the known values we will simplify the given equation $\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$ to find the required value.
Complete step by step solution:
Given that, $\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$
We have the value $\omega +{{\omega }^{2}}=-1$. Substituting the all the above values in the given equation, then we will have
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....=\left( x-1 \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$
Now the values of ${{\omega }^{4}}=\omega $, ${{\omega }^{8}}={{\left( {{\omega }^{4}} \right)}^{2}}={{\omega }^{2}}$. Substituting these values in the above equation, then we will have
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....=\left( x-1 \right)\left( x+{{\omega }^{2}}+\omega \right)\left( x+\omega +{{\omega }^{2}} \right).....$
Rearranging the terms in an order, then we will get
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....=\left( x-1 \right)\left( x+\omega +{{\omega }^{2}} \right)\left( x+\omega +{{\omega }^{2}} \right).....$
Again, we have the value $\omega +{{\omega }^{2}}=-1$, substituting this value in above equation, then we will have
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....=\left( x-1 \right)\left( x-1 \right)\left( x-1 \right).....$
Here we have the value of $\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$ but we need to calculate the value of $\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$ till $2n$terms, so
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....\text{ till 2n terms}=\left( x-1 \right)\left( x-1 \right)\left( x-1 \right).....\text{ 2n times}$
We know that ${{x}^{n}}=x.x.x.x....\text{ till n terms}$, hence
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....\text{ till 2n terms}={{\left( x-1 \right)}^{2n}}$
$\therefore $ option A is the correct answer.
Note: There are similar problems like $\left( 1-\omega +{{\omega }^{2}} \right)\left( 1-{{\omega }^{2}}+{{\omega }^{4}} \right)\left( 1-{{\omega }^{4}}+{{\omega }^{8}} \right).....\text{ till 2n factors}\text{.}$ For this kind of problem also we are going to use the same procedure, the same formula to get the answer. Some students might not realize that the question is related to cube roots of unity, i.e $1,\omega,{{\omega }^{2}}$. They may try to expand the whole thing using algebraic identities and then get stuck after a while. So, it is important to be able to relate the question with the topic and then answer.
Complete step by step solution:
Given that, $\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$
We have the value $\omega +{{\omega }^{2}}=-1$. Substituting the all the above values in the given equation, then we will have
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....=\left( x-1 \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$
Now the values of ${{\omega }^{4}}=\omega $, ${{\omega }^{8}}={{\left( {{\omega }^{4}} \right)}^{2}}={{\omega }^{2}}$. Substituting these values in the above equation, then we will have
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....=\left( x-1 \right)\left( x+{{\omega }^{2}}+\omega \right)\left( x+\omega +{{\omega }^{2}} \right).....$
Rearranging the terms in an order, then we will get
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....=\left( x-1 \right)\left( x+\omega +{{\omega }^{2}} \right)\left( x+\omega +{{\omega }^{2}} \right).....$
Again, we have the value $\omega +{{\omega }^{2}}=-1$, substituting this value in above equation, then we will have
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....=\left( x-1 \right)\left( x-1 \right)\left( x-1 \right).....$
Here we have the value of $\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$ but we need to calculate the value of $\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....$ till $2n$terms, so
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....\text{ till 2n terms}=\left( x-1 \right)\left( x-1 \right)\left( x-1 \right).....\text{ 2n times}$
We know that ${{x}^{n}}=x.x.x.x....\text{ till n terms}$, hence
$\left( x+\omega +{{\omega }^{2}} \right)\left( x+{{\omega }^{2}}+{{\omega }^{4}} \right)\left( x+{{\omega }^{4}}+{{\omega }^{8}} \right).....\text{ till 2n terms}={{\left( x-1 \right)}^{2n}}$
$\therefore $ option A is the correct answer.
Note: There are similar problems like $\left( 1-\omega +{{\omega }^{2}} \right)\left( 1-{{\omega }^{2}}+{{\omega }^{4}} \right)\left( 1-{{\omega }^{4}}+{{\omega }^{8}} \right).....\text{ till 2n factors}\text{.}$ For this kind of problem also we are going to use the same procedure, the same formula to get the answer. Some students might not realize that the question is related to cube roots of unity, i.e $1,\omega,{{\omega }^{2}}$. They may try to expand the whole thing using algebraic identities and then get stuck after a while. So, it is important to be able to relate the question with the topic and then answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

