Answer
Verified
424.8k+ views
Hint: Here in this question, given an expression of irrational numbers. First we can solve the given expression to the simplest form by using basic arithmetic operation. Analyzing the simplest form of the expression we can say that it will neither positive nor negative and neither rational nor irrational.
Complete step-by-step solution:
A rational number is a number that can be expressed as a fraction where both the numerator and the denominator in the fraction are integers. The denominator in a rational number cannot be zero.
Expressed as an equation, a rational number is a number \[\dfrac{a}{b}\], \[b \ne 0\]
where a and b are both integers.
This equation shows that all integers, finite decimals, and repeating decimals are rational numbers. In other words, most numbers are rational numbers.
The opposite of rational numbers are irrational numbers. In simple terms, irrational numbers are real numbers that can’t be written as a simple fraction.
Now consider the given expression
\[ \Rightarrow \,\,\,\left( {6 + \sqrt {27} } \right) - \left( {3 + \sqrt 3 } \right) + \left( {1 - 2\sqrt 3 } \right)\]
Remove all the parenthesis using sign convention, then
\[ \Rightarrow \,\,\,6 + \sqrt {27} - 3 - \sqrt 3 + 1 - 2\sqrt 3 \]
\[\sqrt {27} \] Can be written as \[\sqrt {27} = \sqrt {9 \times 3} = \sqrt {{3^2} \times 3} = \sqrt {{3^2}} \cdot \sqrt 3 = 3\sqrt 3 \], then
\[ \Rightarrow \,\,\,6 + 3\sqrt 3 - 3 - \sqrt 3 + 1 - 2\sqrt 3 \]
Isolate real and imaginary numbers
\[ \Rightarrow \,\,\,6 - 3 + 1 + 3\sqrt 3 - \sqrt 3 - 2\sqrt 3 \]
On simplification, we get
\[ \Rightarrow \,\,\,7 - 3 + \left( {3 - 1 - 2} \right)\sqrt 3 \]
\[ \Rightarrow \,\,\,4 + \left( 0 \right)\sqrt 3 \]
\[ \Rightarrow \,\,\,4\]
The number 4 is positive and is an integer, hence 4 is a rational number.
Because 4 can also be expressed as \[\dfrac{4}{1}\].
When expressed as 4, both the numerator and the denominator are integers. The denominator doesn’t equal 0.
Hence the correct answer is option (C) i.e,Positive and rational.
Note: In mathematics we have many kinds of numbers namely, natural numbers are the counting numbers, whole numbers are the natural numbers along with zero, integers are the whole numbers and the also include the negative of natural numbers, rational numbers are in the form of p by q form, irrational numbers and real numbers.
Complete step-by-step solution:
A rational number is a number that can be expressed as a fraction where both the numerator and the denominator in the fraction are integers. The denominator in a rational number cannot be zero.
Expressed as an equation, a rational number is a number \[\dfrac{a}{b}\], \[b \ne 0\]
where a and b are both integers.
This equation shows that all integers, finite decimals, and repeating decimals are rational numbers. In other words, most numbers are rational numbers.
The opposite of rational numbers are irrational numbers. In simple terms, irrational numbers are real numbers that can’t be written as a simple fraction.
Now consider the given expression
\[ \Rightarrow \,\,\,\left( {6 + \sqrt {27} } \right) - \left( {3 + \sqrt 3 } \right) + \left( {1 - 2\sqrt 3 } \right)\]
Remove all the parenthesis using sign convention, then
\[ \Rightarrow \,\,\,6 + \sqrt {27} - 3 - \sqrt 3 + 1 - 2\sqrt 3 \]
\[\sqrt {27} \] Can be written as \[\sqrt {27} = \sqrt {9 \times 3} = \sqrt {{3^2} \times 3} = \sqrt {{3^2}} \cdot \sqrt 3 = 3\sqrt 3 \], then
\[ \Rightarrow \,\,\,6 + 3\sqrt 3 - 3 - \sqrt 3 + 1 - 2\sqrt 3 \]
Isolate real and imaginary numbers
\[ \Rightarrow \,\,\,6 - 3 + 1 + 3\sqrt 3 - \sqrt 3 - 2\sqrt 3 \]
On simplification, we get
\[ \Rightarrow \,\,\,7 - 3 + \left( {3 - 1 - 2} \right)\sqrt 3 \]
\[ \Rightarrow \,\,\,4 + \left( 0 \right)\sqrt 3 \]
\[ \Rightarrow \,\,\,4\]
The number 4 is positive and is an integer, hence 4 is a rational number.
Because 4 can also be expressed as \[\dfrac{4}{1}\].
When expressed as 4, both the numerator and the denominator are integers. The denominator doesn’t equal 0.
Hence the correct answer is option (C) i.e,Positive and rational.
Note: In mathematics we have many kinds of numbers namely, natural numbers are the counting numbers, whole numbers are the natural numbers along with zero, integers are the whole numbers and the also include the negative of natural numbers, rational numbers are in the form of p by q form, irrational numbers and real numbers.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE