
The value of ${{\left( 1+i \right)}^{8}}+{{\left( 1-i \right)}^{8}}$ is:
a). 16
b). -16
c). 32
d). -32
Answer
612.9k+ views
Hint: In this problem, first we will use the formula which is used to convert complex numbers of the form \[a+bi\] to the form of $r{{e}^{i\theta }}$ . Then will apply the law of indices to simplify the terms. Adding both the terms in the final step will yield us the answer.
Complete step-by-step solution -
The formula we are going to use is $a+bi=\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right){{e}^{i\theta }}$ , where $\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)$ .
Thus, applying the formula to the first term in the question, we get,
$1+i=\left( \sqrt{{{1}^{2}}+{{1}^{2}}} \right){{e}^{i\theta }}$ , where $\theta ={{\tan }^{-1}}\left( \dfrac{1}{1} \right)$ .
Solving further we get, $1+i=\sqrt{1+1}{{e}^{i\dfrac{\pi }{4}}}$ , Since $\theta ={{\tan }^{-1}}\left( 1 \right)$ which is $\left( \dfrac{\pi }{4} \right)$
$\therefore 1+i=\sqrt{2}{{e}^{\dfrac{i\pi }{4}}}$ ……………………. (i)
Similarly let us apply the same formula to the second term $\left( 1-i \right)$ .
Thus, applying the formula, we get,
$1-i=\left( \sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}} \right){{e}^{i\theta }}$ , where $\theta ={{\tan }^{-1}}\left( \left| \dfrac{-1}{1} \right| \right)+\pi $
Solving further we get,
$1-i=\sqrt{1+1}{{e}^{i\left( \dfrac{5\pi }{4} \right)}}$ since $\theta ={{\tan }^{-1}}\left( \left| -1 \right| \right)+\pi $ which is $\left( \dfrac{5\pi }{4} \right)$
$\therefore 1-i=\sqrt{2}{{e}^{\dfrac{5i\pi }{4}}}$ …………………. (ii)
Now, the equation says,
${{\left( 1+i \right)}^{8}}+{{\left( 1-i \right)}^{8}}={{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{8}}+{{\left( \sqrt{2}{{e}^{\dfrac{5i\pi }{4}}} \right)}^{8}}$ …………. Substituting from (i) and (ii).
Now applying the law of indices which says ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ , we get,
${{\left( \sqrt{2} \right)}^{8}}\left( {{e}^{\dfrac{i\pi }{4}\times 8}} \right)+{{\left( \sqrt{2} \right)}^{8}}\left( {{e}^{\dfrac{5i\pi }{4}\times 8}} \right)$
$=\left( {{2}^{\dfrac{1}{2}\times 8}} \right)\left( {{e}^{i\pi \times 2}} \right)+\left( {{2}^{\dfrac{1}{2}\times 8}} \right)\left( {{e}^{i\pi \times 10}} \right)$…………………. Since $\sqrt{2}={{2}^{\dfrac{1}{2}}}$
$\left( {{2}^{4}} \right)\left( {{e}^{2\pi i}} \right)+\left( {{2}^{4}} \right)\left( {{e}^{10\pi i}} \right)$ ………………… (iii)
Now we know the Euler’s formula as ${{e}^{i\theta }}=\cos \theta +i\sin \theta $ .
Now let us put $\theta $ as $2\pi $ and as $10\pi $ one at a time.
$\theta =2\pi \Rightarrow {{e}^{2\pi i}}=\cos \left( 2\pi \right)+i\sin \left( 2\pi \right)$
$\Rightarrow {{e}^{2\pi i}}=1$ ……….. (iv)
$\theta = 10\pi \Rightarrow {{e}^{10\pi i}}=\cos \left( 10\pi \right)+i\sin \left( 10\pi \right)$
$\Rightarrow {{e}^{10\pi i}}=1$ …………… (v)
Substituting (iv) and (v) in (iii) we get,
$\begin{align}
& \left( {{2}^{4}} \right)\left( 1 \right)+\left( {{2}^{4}} \right)\left( 1 \right) \\
& ={{2}^{4}}+{{2}^{4}} \\
& =16+16 \\
& 32 \\
\end{align}$
Thus, ${{\left( 1+i \right)}^{8}}+{{\left( 1-i \right)}^{8}}=32$ .
Therefore, option (c) is correct.
Note: An important point we need to remember is the formula for angle $\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)$ .
The formula actually has four parts,
i) $\theta ={{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in I$ quadrant.
ii) $\theta =\pi -{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in II$ quadrant.
iii) $\theta =\pi +{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in III$ quadrant.
iv) $\theta =-{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in IV$ quadrant.
Applying the wrong formula would result in a wrong calculation of angle and thus would give you a wrong answer.
Complete step-by-step solution -
The formula we are going to use is $a+bi=\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right){{e}^{i\theta }}$ , where $\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)$ .
Thus, applying the formula to the first term in the question, we get,
$1+i=\left( \sqrt{{{1}^{2}}+{{1}^{2}}} \right){{e}^{i\theta }}$ , where $\theta ={{\tan }^{-1}}\left( \dfrac{1}{1} \right)$ .
Solving further we get, $1+i=\sqrt{1+1}{{e}^{i\dfrac{\pi }{4}}}$ , Since $\theta ={{\tan }^{-1}}\left( 1 \right)$ which is $\left( \dfrac{\pi }{4} \right)$
$\therefore 1+i=\sqrt{2}{{e}^{\dfrac{i\pi }{4}}}$ ……………………. (i)
Similarly let us apply the same formula to the second term $\left( 1-i \right)$ .
Thus, applying the formula, we get,
$1-i=\left( \sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}} \right){{e}^{i\theta }}$ , where $\theta ={{\tan }^{-1}}\left( \left| \dfrac{-1}{1} \right| \right)+\pi $
Solving further we get,
$1-i=\sqrt{1+1}{{e}^{i\left( \dfrac{5\pi }{4} \right)}}$ since $\theta ={{\tan }^{-1}}\left( \left| -1 \right| \right)+\pi $ which is $\left( \dfrac{5\pi }{4} \right)$
$\therefore 1-i=\sqrt{2}{{e}^{\dfrac{5i\pi }{4}}}$ …………………. (ii)
Now, the equation says,
${{\left( 1+i \right)}^{8}}+{{\left( 1-i \right)}^{8}}={{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{8}}+{{\left( \sqrt{2}{{e}^{\dfrac{5i\pi }{4}}} \right)}^{8}}$ …………. Substituting from (i) and (ii).
Now applying the law of indices which says ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ , we get,
${{\left( \sqrt{2} \right)}^{8}}\left( {{e}^{\dfrac{i\pi }{4}\times 8}} \right)+{{\left( \sqrt{2} \right)}^{8}}\left( {{e}^{\dfrac{5i\pi }{4}\times 8}} \right)$
$=\left( {{2}^{\dfrac{1}{2}\times 8}} \right)\left( {{e}^{i\pi \times 2}} \right)+\left( {{2}^{\dfrac{1}{2}\times 8}} \right)\left( {{e}^{i\pi \times 10}} \right)$…………………. Since $\sqrt{2}={{2}^{\dfrac{1}{2}}}$
$\left( {{2}^{4}} \right)\left( {{e}^{2\pi i}} \right)+\left( {{2}^{4}} \right)\left( {{e}^{10\pi i}} \right)$ ………………… (iii)
Now we know the Euler’s formula as ${{e}^{i\theta }}=\cos \theta +i\sin \theta $ .
Now let us put $\theta $ as $2\pi $ and as $10\pi $ one at a time.
$\theta =2\pi \Rightarrow {{e}^{2\pi i}}=\cos \left( 2\pi \right)+i\sin \left( 2\pi \right)$
$\Rightarrow {{e}^{2\pi i}}=1$ ……….. (iv)
$\theta = 10\pi \Rightarrow {{e}^{10\pi i}}=\cos \left( 10\pi \right)+i\sin \left( 10\pi \right)$
$\Rightarrow {{e}^{10\pi i}}=1$ …………… (v)
Substituting (iv) and (v) in (iii) we get,
$\begin{align}
& \left( {{2}^{4}} \right)\left( 1 \right)+\left( {{2}^{4}} \right)\left( 1 \right) \\
& ={{2}^{4}}+{{2}^{4}} \\
& =16+16 \\
& 32 \\
\end{align}$
Thus, ${{\left( 1+i \right)}^{8}}+{{\left( 1-i \right)}^{8}}=32$ .
Therefore, option (c) is correct.
Note: An important point we need to remember is the formula for angle $\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)$ .
The formula actually has four parts,
i) $\theta ={{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in I$ quadrant.
ii) $\theta =\pi -{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in II$ quadrant.
iii) $\theta =\pi +{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in III$ quadrant.
iv) $\theta =-{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)$ , if $\left( a,b \right)\in IV$ quadrant.
Applying the wrong formula would result in a wrong calculation of angle and thus would give you a wrong answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

