
The value of is equal to \[\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\sqrt{\mathop{2}^{1947}}}}\]
A) \[\dfrac{487}{\sqrt{\mathop{2}^{1945}}}\]
B) \[\dfrac{1946}{\sqrt{\mathop{2}^{1947}}}\]
C) \[\dfrac{1947}{\sqrt{\mathop{2}^{1947}}}\]
D) \[\dfrac{1948}{\sqrt{\mathop{2}^{1947}}}\]
Answer
601.2k+ views
Hint: In this type of question we always write series in expanded form first and then write the same series in reverse form. After that we can add both forms of series and get a desired expression.
Complete step by step solution:
Consider\[\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\sqrt{\mathop{2}^{1947}}}}\]
We can write it as
\[x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+{{2}^{\dfrac{1947}{2}}}}}\]………………………………………………….(i)
On expanding
\[x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}=\dfrac{1}{\mathop{2}^{0}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1}+\mathop{2}^{\dfrac{1947}{2}}}}+.................+\dfrac{1}{\mathop{2}^{1947}+\mathop{2}^{\dfrac{1947}{2}}}\] ……………………(ii)
Reverse the equation (ii)
\[x=\dfrac{1}{\mathop{2}^{1947}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1946}+\mathop{2}^{\dfrac{1947}{2}}}+.................+\dfrac{1}{\mathop{2}^{1}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{0}+\mathop{2}^{\dfrac{1947}{2}}}\]
Based on above pattern we can write this
\[\Rightarrow x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}}}\]…………………………………………………….(iii)
On adding equation (ii) and (ii)
\[\Rightarrow x+x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}}+\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}} \right)}\]
From the above expression we can take \[\mathop{2}^{n}\]as common from first term and \[\mathop{2}^{\dfrac{1947}{2}}\]as common from second term in denominator.
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{n}}\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}\left( {{2}^{1947-n-\dfrac{1947}{2}}}+1 \right)} \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{n}}\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}\left( {{2}^{\dfrac{1947}{2}-n}}+1 \right)} \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}\left( \dfrac{1}{{{2}^{n}}}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}} \right) \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}\left( \dfrac{{{2}^{\dfrac{1947}{2}-n}}+1}{{{2}^{\dfrac{1947}{2}}}} \right) \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{\dfrac{1947}{2}}}} \right)}\]
\[\Rightarrow 2x=\dfrac{1948}{{{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow x=\dfrac{974}{{{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow x=\dfrac{487}{{{2}^{\dfrac{1945}{2}}}}\]
\[\Rightarrow x=\dfrac{487}{\sqrt{{{2}^{1945}}}}\]
Hence option (a) is correct.
Note: These types of problems are called sequence and series problems. You have to try solving these sums by making small amounts of changes and try to use progression formulas.
Complete step by step solution:
Consider\[\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\sqrt{\mathop{2}^{1947}}}}\]
We can write it as
\[x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+{{2}^{\dfrac{1947}{2}}}}}\]………………………………………………….(i)
On expanding
\[x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}=\dfrac{1}{\mathop{2}^{0}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1}+\mathop{2}^{\dfrac{1947}{2}}}}+.................+\dfrac{1}{\mathop{2}^{1947}+\mathop{2}^{\dfrac{1947}{2}}}\] ……………………(ii)
Reverse the equation (ii)
\[x=\dfrac{1}{\mathop{2}^{1947}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1946}+\mathop{2}^{\dfrac{1947}{2}}}+.................+\dfrac{1}{\mathop{2}^{1}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{0}+\mathop{2}^{\dfrac{1947}{2}}}\]
Based on above pattern we can write this
\[\Rightarrow x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}}}\]…………………………………………………….(iii)
On adding equation (ii) and (ii)
\[\Rightarrow x+x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}}+\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}} \right)}\]
From the above expression we can take \[\mathop{2}^{n}\]as common from first term and \[\mathop{2}^{\dfrac{1947}{2}}\]as common from second term in denominator.
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{n}}\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}\left( {{2}^{1947-n-\dfrac{1947}{2}}}+1 \right)} \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{n}}\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}\left( {{2}^{\dfrac{1947}{2}-n}}+1 \right)} \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}\left( \dfrac{1}{{{2}^{n}}}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}} \right) \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}\left( \dfrac{{{2}^{\dfrac{1947}{2}-n}}+1}{{{2}^{\dfrac{1947}{2}}}} \right) \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{\dfrac{1947}{2}}}} \right)}\]
\[\Rightarrow 2x=\dfrac{1948}{{{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow x=\dfrac{974}{{{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow x=\dfrac{487}{{{2}^{\dfrac{1945}{2}}}}\]
\[\Rightarrow x=\dfrac{487}{\sqrt{{{2}^{1945}}}}\]
Hence option (a) is correct.
Note: These types of problems are called sequence and series problems. You have to try solving these sums by making small amounts of changes and try to use progression formulas.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

