
The value of is equal to \[\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\sqrt{\mathop{2}^{1947}}}}\]
A) \[\dfrac{487}{\sqrt{\mathop{2}^{1945}}}\]
B) \[\dfrac{1946}{\sqrt{\mathop{2}^{1947}}}\]
C) \[\dfrac{1947}{\sqrt{\mathop{2}^{1947}}}\]
D) \[\dfrac{1948}{\sqrt{\mathop{2}^{1947}}}\]
Answer
586.5k+ views
Hint: In this type of question we always write series in expanded form first and then write the same series in reverse form. After that we can add both forms of series and get a desired expression.
Complete step by step solution:
Consider\[\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\sqrt{\mathop{2}^{1947}}}}\]
We can write it as
\[x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+{{2}^{\dfrac{1947}{2}}}}}\]………………………………………………….(i)
On expanding
\[x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}=\dfrac{1}{\mathop{2}^{0}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1}+\mathop{2}^{\dfrac{1947}{2}}}}+.................+\dfrac{1}{\mathop{2}^{1947}+\mathop{2}^{\dfrac{1947}{2}}}\] ……………………(ii)
Reverse the equation (ii)
\[x=\dfrac{1}{\mathop{2}^{1947}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1946}+\mathop{2}^{\dfrac{1947}{2}}}+.................+\dfrac{1}{\mathop{2}^{1}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{0}+\mathop{2}^{\dfrac{1947}{2}}}\]
Based on above pattern we can write this
\[\Rightarrow x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}}}\]…………………………………………………….(iii)
On adding equation (ii) and (ii)
\[\Rightarrow x+x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}}+\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}} \right)}\]
From the above expression we can take \[\mathop{2}^{n}\]as common from first term and \[\mathop{2}^{\dfrac{1947}{2}}\]as common from second term in denominator.
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{n}}\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}\left( {{2}^{1947-n-\dfrac{1947}{2}}}+1 \right)} \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{n}}\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}\left( {{2}^{\dfrac{1947}{2}-n}}+1 \right)} \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}\left( \dfrac{1}{{{2}^{n}}}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}} \right) \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}\left( \dfrac{{{2}^{\dfrac{1947}{2}-n}}+1}{{{2}^{\dfrac{1947}{2}}}} \right) \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{\dfrac{1947}{2}}}} \right)}\]
\[\Rightarrow 2x=\dfrac{1948}{{{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow x=\dfrac{974}{{{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow x=\dfrac{487}{{{2}^{\dfrac{1945}{2}}}}\]
\[\Rightarrow x=\dfrac{487}{\sqrt{{{2}^{1945}}}}\]
Hence option (a) is correct.
Note: These types of problems are called sequence and series problems. You have to try solving these sums by making small amounts of changes and try to use progression formulas.
Complete step by step solution:
Consider\[\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\sqrt{\mathop{2}^{1947}}}}\]
We can write it as
\[x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+{{2}^{\dfrac{1947}{2}}}}}\]………………………………………………….(i)
On expanding
\[x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}=\dfrac{1}{\mathop{2}^{0}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1}+\mathop{2}^{\dfrac{1947}{2}}}}+.................+\dfrac{1}{\mathop{2}^{1947}+\mathop{2}^{\dfrac{1947}{2}}}\] ……………………(ii)
Reverse the equation (ii)
\[x=\dfrac{1}{\mathop{2}^{1947}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1946}+\mathop{2}^{\dfrac{1947}{2}}}+.................+\dfrac{1}{\mathop{2}^{1}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{0}+\mathop{2}^{\dfrac{1947}{2}}}\]
Based on above pattern we can write this
\[\Rightarrow x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}}}\]…………………………………………………….(iii)
On adding equation (ii) and (ii)
\[\Rightarrow x+x=\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}}+\sum\limits_{n=0}^{1947}{\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\mathop{2}^{n}+\mathop{2}^{\dfrac{1947}{2}}}+\dfrac{1}{\mathop{2}^{1947-n}+\mathop{2}^{\dfrac{1947}{2}}} \right)}\]
From the above expression we can take \[\mathop{2}^{n}\]as common from first term and \[\mathop{2}^{\dfrac{1947}{2}}\]as common from second term in denominator.
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{n}}\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}\left( {{2}^{1947-n-\dfrac{1947}{2}}}+1 \right)} \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{n}}\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}\left( {{2}^{\dfrac{1947}{2}-n}}+1 \right)} \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}\left( \dfrac{1}{{{2}^{n}}}+\dfrac{1}{{{2}^{\dfrac{1947}{2}}}} \right) \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{\left( 1+{{2}^{\dfrac{1947}{2}-n}} \right)}\left( \dfrac{{{2}^{\dfrac{1947}{2}-n}}+1}{{{2}^{\dfrac{1947}{2}}}} \right) \right)}\]
\[\Rightarrow 2x=\sum\limits_{n=0}^{1947}{\left( \dfrac{1}{{{2}^{\dfrac{1947}{2}}}} \right)}\]
\[\Rightarrow 2x=\dfrac{1948}{{{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow x=\dfrac{974}{{{2}^{\dfrac{1947}{2}}}}\]
\[\Rightarrow x=\dfrac{487}{{{2}^{\dfrac{1945}{2}}}}\]
\[\Rightarrow x=\dfrac{487}{\sqrt{{{2}^{1945}}}}\]
Hence option (a) is correct.
Note: These types of problems are called sequence and series problems. You have to try solving these sums by making small amounts of changes and try to use progression formulas.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

