
The value of $\int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx$ where $\left[ x \right]$ the greatest integer less than or equal to x and $\left\{ x \right\}$ is the fractional part of x is:
(a). ${7}/{2}\;$
(b). ${5}/{2}\;$
(c). ${1}/{2}\;$
(d). ${3}/{2}\;$
Answer
597.6k+ views
Hint: In this question, we will break the integration sign in three intervals such that we can write the values of functions used and then integrate them to find required value.
Complete step-by-step solution -
For any real number x, $\left[ x \right]$, that is greatest integer function, represents that integer number which is less than x, but greater than or equal to all other integers which are less than x and $\left[ x \right]$is equal to x if x is integer.
Example: \[\left[ 7.5 \right]=7\] , $7<7.5$ but \[7\ge 7,6,5\ldots \]
Also, {x} is a fractional part function, that is for any real number x, digits after decimal with zero before decimal will be{x}.
Example: $\left\{ 7.5 \right\}=0.5$
Here, when we add [x] and {x}, we actually add the value of x with decimal points with its decimal points, so we will get x.
$\begin{align}
& \left[ 7.5 \right]+\left\{ 7.5 \right\}=7+0.5 \\
& =7.5 \\
\end{align}$
$\begin{align}
& \left[ x \right]+\left\{ x \right\}=x \\
& \Rightarrow \left\{ x \right\}=x-\left[ x \right]\ldots \ldots (i) \\
\end{align}$
Now, we are to find value of,
$\int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx$
Using equation (i), we get,
$\begin{align}
& \int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\int\limits_{-1}^{2}{\left| \left[ x \right]-\left( x-\left[ x \right] \right) \right|}dx \\
& =\int\limits_{-1}^{2}{\left| \left[ x \right]-x-\left[ x \right] \right|}dx \\
& =\int\limits_{-1}^{2}{\left| 2\left[ x \right]-x \right|}dx \\
\end{align}$
Breaking integer sign in three parts, we get,
\[\int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\int\limits_{-1}^{0}{\left| 2\left[ x \right]-x \right|}dx+\int\limits_{0}^{1}{\left| 2\left[ x \right]-x \right|}dx+\int\limits_{1}^{2}{\left| 2\left[ x \right]-x \right|}dx\ldots \ldots (ii)\]
Now, value of $\left[ x \right]$can be given as,
\[\left[ x \right]=\left\{ \begin{align}
& -1,\,-1\le x<0 \\
& 0,\,0\le x<1 \\
& 1,\,1\le x<2 \\
\end{align} \right.\]
Using this value of $\left[ x \right]$in equation (ii), we get,
\[\begin{align}
& \int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\int\limits_{-1}^{0}{\left| 2\left[ -1 \right]-x \right|}dx+\int\limits_{0}^{1}{\left| 2\left[ 0 \right]-x \right|}dx+\int\limits_{1}^{2}{\left| 2\left[ 1 \right]-x \right|}dx \\
& =\int\limits_{-1}^{0}{\left| -2-x \right|}dx+\int\limits_{0}^{1}{\left| 0-x \right|}dx+\int\limits_{1}^{2}{\left| 2-x \right|}dx\ldots \ldots (iii) \\
\end{align}\]
Here, in range -1 to 0, x is negative and less than 2 so, $-2-x$ is also negative.
$\left| -2-x \right|=-\left[ -2-x \right]=2+x$ .
In range 0 to 1 of x, x is positive, So, -x is negative.
Therefore $\left| -x \right|=-\left( -x \right)=x$ .
In the range of 1 to 2, x is positive, but less than 2. So, $2-x$ is positive.
Therefore $\left| 2-x \right|=2-x$ .
Using these values in equation (iii), we get,
\[\begin{align}
& \int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\int\limits_{-1}^{0}{\left( 2+x \right)}dx+\int\limits_{0}^{1}{x}dx+\int\limits_{1}^{2}{\left( 2-x \right)}dx \\
& =\left[ 2x+\dfrac{{{x}^{2}}}{2} \right]_{-1}^{0}+\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{1}+\left[ 2x-\dfrac{{{x}^{2}}}{2} \right]_{1}^{2} \\
& =\left( 2\times 0+\dfrac{{{0}^{2}}}{2} \right)-\left( 2\left( -1 \right)+\dfrac{{{\left( -1 \right)}^{2}}}{2} \right)+\left( \dfrac{{{1}^{2}}}{2} \right)-\left( \dfrac{{{0}^{2}}}{2} \right)+\left( 2\left( 2 \right)-\dfrac{{{2}^{2}}}{2} \right)-\left( 2\times 1-\dfrac{{{\left( 1 \right)}^{2}}}{2} \right) \\
\end{align}\]
Opening brackets, we get,
$\begin{align}
& \int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=0-\left( -2+\dfrac{1}{2} \right)+\dfrac{1}{2}-0+\left( 4-\dfrac{4}{2} \right)-\left( 2-\dfrac{1}{2} \right) \\
& =2-\dfrac{1}{2}+\dfrac{1}{2}+4-\dfrac{4}{2}-2+\dfrac{1}{2} \\
& =4-\dfrac{3}{2} \\
\end{align}$
Taking LCM, we get,
$\int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\dfrac{8-3}{2}=\dfrac{5}{2}$
Hence, the value of the given integral is $\dfrac{5}{2}$ .
Note: In this type of questions, where $\left\{ x \right\}$is used, try to cancel it or write it in the form $x-\left[ x \right]$ , otherwise integrating it will be difficult.
Complete step-by-step solution -
For any real number x, $\left[ x \right]$, that is greatest integer function, represents that integer number which is less than x, but greater than or equal to all other integers which are less than x and $\left[ x \right]$is equal to x if x is integer.
Example: \[\left[ 7.5 \right]=7\] , $7<7.5$ but \[7\ge 7,6,5\ldots \]
Also, {x} is a fractional part function, that is for any real number x, digits after decimal with zero before decimal will be{x}.
Example: $\left\{ 7.5 \right\}=0.5$
Here, when we add [x] and {x}, we actually add the value of x with decimal points with its decimal points, so we will get x.
$\begin{align}
& \left[ 7.5 \right]+\left\{ 7.5 \right\}=7+0.5 \\
& =7.5 \\
\end{align}$
$\begin{align}
& \left[ x \right]+\left\{ x \right\}=x \\
& \Rightarrow \left\{ x \right\}=x-\left[ x \right]\ldots \ldots (i) \\
\end{align}$
Now, we are to find value of,
$\int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx$
Using equation (i), we get,
$\begin{align}
& \int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\int\limits_{-1}^{2}{\left| \left[ x \right]-\left( x-\left[ x \right] \right) \right|}dx \\
& =\int\limits_{-1}^{2}{\left| \left[ x \right]-x-\left[ x \right] \right|}dx \\
& =\int\limits_{-1}^{2}{\left| 2\left[ x \right]-x \right|}dx \\
\end{align}$
Breaking integer sign in three parts, we get,
\[\int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\int\limits_{-1}^{0}{\left| 2\left[ x \right]-x \right|}dx+\int\limits_{0}^{1}{\left| 2\left[ x \right]-x \right|}dx+\int\limits_{1}^{2}{\left| 2\left[ x \right]-x \right|}dx\ldots \ldots (ii)\]
Now, value of $\left[ x \right]$can be given as,
\[\left[ x \right]=\left\{ \begin{align}
& -1,\,-1\le x<0 \\
& 0,\,0\le x<1 \\
& 1,\,1\le x<2 \\
\end{align} \right.\]
Using this value of $\left[ x \right]$in equation (ii), we get,
\[\begin{align}
& \int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\int\limits_{-1}^{0}{\left| 2\left[ -1 \right]-x \right|}dx+\int\limits_{0}^{1}{\left| 2\left[ 0 \right]-x \right|}dx+\int\limits_{1}^{2}{\left| 2\left[ 1 \right]-x \right|}dx \\
& =\int\limits_{-1}^{0}{\left| -2-x \right|}dx+\int\limits_{0}^{1}{\left| 0-x \right|}dx+\int\limits_{1}^{2}{\left| 2-x \right|}dx\ldots \ldots (iii) \\
\end{align}\]
Here, in range -1 to 0, x is negative and less than 2 so, $-2-x$ is also negative.
$\left| -2-x \right|=-\left[ -2-x \right]=2+x$ .
In range 0 to 1 of x, x is positive, So, -x is negative.
Therefore $\left| -x \right|=-\left( -x \right)=x$ .
In the range of 1 to 2, x is positive, but less than 2. So, $2-x$ is positive.
Therefore $\left| 2-x \right|=2-x$ .
Using these values in equation (iii), we get,
\[\begin{align}
& \int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\int\limits_{-1}^{0}{\left( 2+x \right)}dx+\int\limits_{0}^{1}{x}dx+\int\limits_{1}^{2}{\left( 2-x \right)}dx \\
& =\left[ 2x+\dfrac{{{x}^{2}}}{2} \right]_{-1}^{0}+\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{1}+\left[ 2x-\dfrac{{{x}^{2}}}{2} \right]_{1}^{2} \\
& =\left( 2\times 0+\dfrac{{{0}^{2}}}{2} \right)-\left( 2\left( -1 \right)+\dfrac{{{\left( -1 \right)}^{2}}}{2} \right)+\left( \dfrac{{{1}^{2}}}{2} \right)-\left( \dfrac{{{0}^{2}}}{2} \right)+\left( 2\left( 2 \right)-\dfrac{{{2}^{2}}}{2} \right)-\left( 2\times 1-\dfrac{{{\left( 1 \right)}^{2}}}{2} \right) \\
\end{align}\]
Opening brackets, we get,
$\begin{align}
& \int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=0-\left( -2+\dfrac{1}{2} \right)+\dfrac{1}{2}-0+\left( 4-\dfrac{4}{2} \right)-\left( 2-\dfrac{1}{2} \right) \\
& =2-\dfrac{1}{2}+\dfrac{1}{2}+4-\dfrac{4}{2}-2+\dfrac{1}{2} \\
& =4-\dfrac{3}{2} \\
\end{align}$
Taking LCM, we get,
$\int\limits_{-1}^{2}{\left| \left[ x \right]-\left\{ x \right\} \right|}dx=\dfrac{8-3}{2}=\dfrac{5}{2}$
Hence, the value of the given integral is $\dfrac{5}{2}$ .
Note: In this type of questions, where $\left\{ x \right\}$is used, try to cancel it or write it in the form $x-\left[ x \right]$ , otherwise integrating it will be difficult.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

