
The value of $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt$ is:
A) $\dfrac{\pi }{2}$
B) $1$
C) $\dfrac{\pi }{4}$
D) None of these
Answer
512.7k+ views
Hint:
Here we have to find the value of $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt$. Take and solve first part i.e. $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt$. In the first part assume $t={{\sin }^{2}}\theta $ and solve it. Also, for the second part assume $t={{\cos }^{2}}\theta $. After simplifying them apply some properties and add them. Try it, you will definitely get the answer.
Complete step by step solution:
Here we are given $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt$.
So to solve this let us take first part i.e. $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt$.
In this take $t={{\sin }^{2}}\theta $ .
Now differentiating $t={{\sin }^{2}}\theta $ we get,
$dt=2\sin \theta \cos \theta d\theta =\sin 2\theta d\theta $
So when $t=0$ then $\theta =0$. Also, when $t={{\sin }^{2}}x$ then $\theta =x$.
So substituting all values in first part we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{{{\sin }^{-1}}(\sqrt{{{\sin }^{2}}\theta })}\sin 2\theta d\theta $
Now simplifying we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{{{\sin }^{-1}}(\sqrt{{{\sin }^{2}}\theta })}\sin 2\theta d\theta $
Again, simplifying in simple manner we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{{{\sin }^{-1}}(\sin \theta )}\sin 2\theta d\theta $
Again, simplifying we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{\theta }\sin 2\theta d\theta $ ……….. (1)
Now let us take second part i.e. $\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt$.
In this take $t={{\cos }^{2}}\theta $ .
Now differentiating $t={{\cos }^{2}}\theta $ we get,
$dt=-2\sin \theta \cos \theta d\theta =-\sin 2\theta d\theta $
So, when $t=0$ then $\theta =\dfrac{\pi }{2}$. Also, when $t={{\cos }^{2}}x$ then $\theta =x$.
Substituting all values in first part we get,
$\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{\dfrac{\pi }{2}}^{x}{{{\cos }^{-1}}(\sqrt{{{\cos }^{2}}\theta })}(-\sin 2\theta )d\theta $
Now simplifying we get,
$\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{\dfrac{\pi }{2}}^{x}{{{\cos }^{-1}}({{\cos }^{2}}\theta )}(-\sin 2\theta )d\theta $
$\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=-\int\limits_{\dfrac{\pi }{2}}^{x}{\theta }\sin 2\theta d\theta $
So, we know the property that, if there is minus sign so if we want to remove it the limits will interchange. So, it becomes
$\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{x}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta $ …….. (2)
Now adding equation (1) and (2) we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{\theta }\sin 2\theta d\theta +\int\limits_{x}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta $
Now we know the property that, $\int\limits_{a}^{b}{f(x)dx+}\int\limits_{b}^{c}{f(x)dx=}\int\limits_{a}^{c}{f(x)dx}$.
Applying above property we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{\theta }\sin 2\theta d\theta +\int\limits_{x}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta $
So now taking i.e. integrating $\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta $.
Now integrating the above by Integration by parts we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}-\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{(-\cos 2\theta )}{2}d\theta }$
Now simplifying we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }$ ……….. (3)
Now let us find the integration of $\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }$,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }=\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}$
Now substituting $\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }=\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}$ in equation (3) we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}$
Now applying limit we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}=\left[ \dfrac{\pi }{2}\times \left( -\dfrac{1}{2} \right)\times \cos \pi \right]$
Here, $\cos \pi =-1$. Simplifying we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \dfrac{\pi }{2}\times \left( -\dfrac{1}{2} \right)\times -1 \right]$
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\dfrac{\pi }{4}$
Therefore, $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\dfrac{\pi }{4}$.
We get the correct answer as option (C).
Note:
Here in the problem, you must know the assumption as we have took $t={{\sin }^{2}}\theta $ in first part and $t={{\cos }^{2}}\theta $ in second part. The properties related to minus sign and integration must be known. While substitution be aware that no terms are missing.
Here we have to find the value of $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt$. Take and solve first part i.e. $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt$. In the first part assume $t={{\sin }^{2}}\theta $ and solve it. Also, for the second part assume $t={{\cos }^{2}}\theta $. After simplifying them apply some properties and add them. Try it, you will definitely get the answer.
Complete step by step solution:
Here we are given $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt$.
So to solve this let us take first part i.e. $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt$.
In this take $t={{\sin }^{2}}\theta $ .
Now differentiating $t={{\sin }^{2}}\theta $ we get,
$dt=2\sin \theta \cos \theta d\theta =\sin 2\theta d\theta $
So when $t=0$ then $\theta =0$. Also, when $t={{\sin }^{2}}x$ then $\theta =x$.
So substituting all values in first part we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{{{\sin }^{-1}}(\sqrt{{{\sin }^{2}}\theta })}\sin 2\theta d\theta $
Now simplifying we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{{{\sin }^{-1}}(\sqrt{{{\sin }^{2}}\theta })}\sin 2\theta d\theta $
Again, simplifying in simple manner we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{{{\sin }^{-1}}(\sin \theta )}\sin 2\theta d\theta $
Again, simplifying we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{\theta }\sin 2\theta d\theta $ ……….. (1)
Now let us take second part i.e. $\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt$.
In this take $t={{\cos }^{2}}\theta $ .
Now differentiating $t={{\cos }^{2}}\theta $ we get,
$dt=-2\sin \theta \cos \theta d\theta =-\sin 2\theta d\theta $
So, when $t=0$ then $\theta =\dfrac{\pi }{2}$. Also, when $t={{\cos }^{2}}x$ then $\theta =x$.
Substituting all values in first part we get,
$\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{\dfrac{\pi }{2}}^{x}{{{\cos }^{-1}}(\sqrt{{{\cos }^{2}}\theta })}(-\sin 2\theta )d\theta $
Now simplifying we get,
$\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{\dfrac{\pi }{2}}^{x}{{{\cos }^{-1}}({{\cos }^{2}}\theta )}(-\sin 2\theta )d\theta $
$\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=-\int\limits_{\dfrac{\pi }{2}}^{x}{\theta }\sin 2\theta d\theta $
So, we know the property that, if there is minus sign so if we want to remove it the limits will interchange. So, it becomes
$\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{x}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta $ …….. (2)
Now adding equation (1) and (2) we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{\theta }\sin 2\theta d\theta +\int\limits_{x}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta $
Now we know the property that, $\int\limits_{a}^{b}{f(x)dx+}\int\limits_{b}^{c}{f(x)dx=}\int\limits_{a}^{c}{f(x)dx}$.
Applying above property we get,
$\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\int\limits_{0}^{x}{\theta }\sin 2\theta d\theta +\int\limits_{x}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta $
So now taking i.e. integrating $\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta $.
Now integrating the above by Integration by parts we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}-\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{(-\cos 2\theta )}{2}d\theta }$
Now simplifying we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }$ ……….. (3)
Now let us find the integration of $\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }$,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }=\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}$
Now substituting $\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 2\theta d\theta }=\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}$ in equation (3) we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}$
Now applying limit we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \theta \times \dfrac{(-\cos 2\theta )}{2} \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\left[ \dfrac{\sin 2\theta }{2} \right]_{0}^{\dfrac{\pi }{2}}=\left[ \dfrac{\pi }{2}\times \left( -\dfrac{1}{2} \right)\times \cos \pi \right]$
Here, $\cos \pi =-1$. Simplifying we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\left[ \dfrac{\pi }{2}\times \left( -\dfrac{1}{2} \right)\times -1 \right]$
$\int\limits_{0}^{\dfrac{\pi }{2}}{\theta }\sin 2\theta d\theta =\dfrac{\pi }{4}$
Therefore, $\int\limits_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}}dt+\int\limits_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt=\dfrac{\pi }{4}$.
We get the correct answer as option (C).
Note:
Here in the problem, you must know the assumption as we have took $t={{\sin }^{2}}\theta $ in first part and $t={{\cos }^{2}}\theta $ in second part. The properties related to minus sign and integration must be known. While substitution be aware that no terms are missing.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
