
The value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}}} dx\] is equal to
(A) $\dfrac{{{\pi ^2}}}{4} - 2$
(B) $\dfrac{{{\pi ^2}}}{4} + 2$
(C) ${\pi ^2} - {e^{\dfrac{\pi }{2}}}$
(D) ${\pi ^2} + {e^{\dfrac{\pi }{2}}}$
Answer
511.5k+ views
Hint: To solve this integral we use some property of integral
1. $\int\limits_{ - a}^a {f(x)dx = \int\limits_{ - a}^a {f( - x)dx} } $
2. $\int\limits_{ - a}^a {f(x)dx = 2\int\limits_0^a {f(x)dx} } $ this property holds only when the given function is even.
3. Integration by part:
$\int {(u.v)dx} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}} \times \int {vdx} } \right)} } dx$
Complete step-by-step answer:
Given function $I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}}} dx\] - - - - - - equation (1)
Now by using property $\int\limits_{ - a}^a {f(x)dx = \int\limits_{ - a}^a {f( - x)dx} } $
By using this we can write
$I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{( - x)}^2}\cos ( - x)}}{{1 + {e^{ - x}}}}} dx\]
Now arrange this equation
We get $I$=\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}{e^x}\cos x}}{{1 + {e^x}}}} dx\] - - - - - - - - -equation (2)
$\because \cos ( - x) = \cos x$
Now add equation 1 and equation 2
$2I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}}} dx\] + \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}{e^x}\cos x}}{{1 + {e^x}}}} dx\]
Now we arrange this
$2I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x(1 + {e^x})}}{{1 + {e^x}}}} dx\]
$2I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{x^2}\cos x} dx\]
Now by using property second but first we check the function $f(x) = {x^2}\cos x$ is even or not
So when a function is even it follow following property
$f( - x) = f(x)$
So $f( - x)$ = ${( - x)^2}\cos ( - x)$
So $f( - x) = {x^2}\cos x$
So we can say that the given function is an even function
So $2I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{x^2}\cos x} dx\] can be written as
$2I$= \[2\int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x} dx\] by using property 2 given in hint.
So from here
$I$= \[\int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x} dx\]
Now by using integration by part theorem
$I = {x^2}\int\limits_0^{\dfrac{\pi }{2}} {\cos x} - \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{d}{{dx}}} {x^2} \times \int {\cos xdx} $
$I = \left[ {{x^2}\sin x} \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {2x.\sin x} $$dx$
Now we solve $\int\limits_0^{\dfrac{\pi }{2}} {2x.\sin x} dx$
Now we use integration by part theorem
$\int\limits_0^{\dfrac{\pi }{2}} {2x.\sin x} dx$ = $2x\int {\sin x - \int {\dfrac{d}{{dx}}} } (2x)\int {\sin xdx} $
So from this we get
\[2x( - \cos x) - \int {2( - \cos x)dx} \]
$ - 2x\cos x + 2\sin x$
Now from this we can write
$I = [{x^2}\sin x + 2x\cos x - 2\sin x]_0^{\dfrac{\pi }{2}}$
Now putting limit
We get
$I = \left[ {\dfrac{{{\pi ^2}}}{4}\sin \dfrac{\pi }{2} + 2 \times \dfrac{\pi }{2}\cos \dfrac{\pi }{2} - 2\sin \dfrac{\pi }{2}} \right] - \left[ {0 \times \sin 0 + 2 \times 0 \times \cos 0 - 2\sin 0} \right]$
now after solving we get
$I = $ $\dfrac{{{\pi ^2}}}{4} + 0 - 2$
$\because \sin \dfrac{\pi }{2} = \cos 0 = 1$ and $\sin 0 = 0$
So from here we can say that
$I = \dfrac{{{\pi ^2}}}{4} - 2$
So option A is correct.
Note: $\int\limits_{ - a}^a {f(x) = 0} $ when the $f(x)$ is an odd function. This property is always true for odd functions.
A function $f(x)$ is said to be an odd function if $f( - x) = - f(x)$ .
1. $\int\limits_{ - a}^a {f(x)dx = \int\limits_{ - a}^a {f( - x)dx} } $
2. $\int\limits_{ - a}^a {f(x)dx = 2\int\limits_0^a {f(x)dx} } $ this property holds only when the given function is even.
3. Integration by part:
$\int {(u.v)dx} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}} \times \int {vdx} } \right)} } dx$
Complete step-by-step answer:
Given function $I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}}} dx\] - - - - - - equation (1)
Now by using property $\int\limits_{ - a}^a {f(x)dx = \int\limits_{ - a}^a {f( - x)dx} } $
By using this we can write
$I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{{( - x)}^2}\cos ( - x)}}{{1 + {e^{ - x}}}}} dx\]
Now arrange this equation
We get $I$=\[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}{e^x}\cos x}}{{1 + {e^x}}}} dx\] - - - - - - - - -equation (2)
$\because \cos ( - x) = \cos x$
Now add equation 1 and equation 2
$2I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x}}{{1 + {e^x}}}} dx\] + \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}{e^x}\cos x}}{{1 + {e^x}}}} dx\]
Now we arrange this
$2I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{{x^2}\cos x(1 + {e^x})}}{{1 + {e^x}}}} dx\]
$2I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{x^2}\cos x} dx\]
Now by using property second but first we check the function $f(x) = {x^2}\cos x$ is even or not
So when a function is even it follow following property
$f( - x) = f(x)$
So $f( - x)$ = ${( - x)^2}\cos ( - x)$
So $f( - x) = {x^2}\cos x$
So we can say that the given function is an even function
So $2I$= \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {{x^2}\cos x} dx\] can be written as
$2I$= \[2\int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x} dx\] by using property 2 given in hint.
So from here
$I$= \[\int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x} dx\]
Now by using integration by part theorem
$I = {x^2}\int\limits_0^{\dfrac{\pi }{2}} {\cos x} - \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{d}{{dx}}} {x^2} \times \int {\cos xdx} $
$I = \left[ {{x^2}\sin x} \right]_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {2x.\sin x} $$dx$
Now we solve $\int\limits_0^{\dfrac{\pi }{2}} {2x.\sin x} dx$
Now we use integration by part theorem
$\int\limits_0^{\dfrac{\pi }{2}} {2x.\sin x} dx$ = $2x\int {\sin x - \int {\dfrac{d}{{dx}}} } (2x)\int {\sin xdx} $
So from this we get
\[2x( - \cos x) - \int {2( - \cos x)dx} \]
$ - 2x\cos x + 2\sin x$
Now from this we can write
$I = [{x^2}\sin x + 2x\cos x - 2\sin x]_0^{\dfrac{\pi }{2}}$
Now putting limit
We get
$I = \left[ {\dfrac{{{\pi ^2}}}{4}\sin \dfrac{\pi }{2} + 2 \times \dfrac{\pi }{2}\cos \dfrac{\pi }{2} - 2\sin \dfrac{\pi }{2}} \right] - \left[ {0 \times \sin 0 + 2 \times 0 \times \cos 0 - 2\sin 0} \right]$
now after solving we get
$I = $ $\dfrac{{{\pi ^2}}}{4} + 0 - 2$
$\because \sin \dfrac{\pi }{2} = \cos 0 = 1$ and $\sin 0 = 0$
So from here we can say that
$I = \dfrac{{{\pi ^2}}}{4} - 2$
So option A is correct.
Note: $\int\limits_{ - a}^a {f(x) = 0} $ when the $f(x)$ is an odd function. This property is always true for odd functions.
A function $f(x)$ is said to be an odd function if $f( - x) = - f(x)$ .
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
