
The value of \[\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx = } \]
A. \[x - \sin x + c\]
B. \[x + \cos x + c\]
C. \[\sin x - x + c\]
D. \[x - \cos x + c\]
Answer
499.8k+ views
Hint: We need to find the value of integral \[\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} \]. For that, we will first write \[\cot x\] and \[\csc x\], in terms of \[\sin x\] and \[\cos x\]. After that, we will cancel out some terms from the numerator and denominator after taking the LCM from the denominator. After all this we will be left with \[\int {\dfrac{{{{\cos }^2}x}}{{1 + \sin x}}} dx\]. We will then use the property \[{\sin ^2}x + {\cos ^2}x = 1\] and write \[{\cos ^2}x = 1 - {\sin ^2}x\]which is of the form \[{a^2} - {b^2}\]. We know, \[{a^2} - {b^2} = (a + b)(a - b)\]. So, we will use this property and then our integral becomes \[\int {\dfrac{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}}{{\left( {1 + \sin x} \right)}}} dx\]. Now, after cancelling the terms from numerator and denominator, we will solve the remaining integral to obtain the required answer.
Complete step by step answer:
We need to find \[\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} \].
Writing \[\cot x\] as \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] and \[\csc x\] as \[\csc x = \dfrac{1}{{\sin x}}\] in the integral, we get
\[ \Rightarrow \int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = \int {\dfrac{{{{\left( {\dfrac{{\cos x}}{{\sin x}}} \right)}^2}}}{{\left( {{{\left( {\dfrac{1}{{\sin x}}} \right)}^2} + \dfrac{1}{{\sin x}}} \right)}}dx} = \int {\dfrac{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}}{{\left( {\dfrac{1}{{{{\sin }^2}x}} + \dfrac{1}{{\sin x}}} \right)}}dx} \]
Taking LCM in the denominator, we have
\[ \Rightarrow \int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = \int {\dfrac{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}}{{\left( {\dfrac{1}{{{{\sin }^2}x}} + \dfrac{1}{{\sin x}}} \right)}}dx} = \int {\dfrac{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}}{{\left( {\dfrac{{1 + \sin x}}{{{{\sin }^2}x}}} \right)}}dx} \]
In simple way, we can write the integral as
\[\int {\left( {\left( {\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}} \right) \div \left( {\dfrac{{1 + \sin x}}{{{{\sin }^2}x}}} \right)} \right)dx} \]
We know, \[a \div b = a \times \dfrac{1}{b}\]. Using this, we get
\[ \Rightarrow \int {\left( {\left( {\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}} \right) \times \left( {\dfrac{1}{{\dfrac{{1 + \sin x}}{{{{\sin }^2}x}}}}} \right)} \right)dx} \]
\[ \Rightarrow \int {\left( {\left( {\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}} \right) \times \left( {\dfrac{{{{\sin }^2}x}}{{1 + \sin x}}} \right)} \right)dx} \]
Cancelling out \[{\sin ^2}x\] from numerator and denominator, we get
\[ \Rightarrow \int {\left( {\dfrac{{{{\cos }^2}x}}{{1 + \sin x}}} \right)dx} \]
Now using \[{\sin ^2}x + {\cos ^2}x = 1 \Leftrightarrow {\cos ^2}x = 1 - {\sin ^2}x\] in numerator, we get
\[ \Rightarrow \int {\left( {\dfrac{{1 - {{\sin }^2}x}}{{1 + \sin x}}} \right)dx} \]
As we know, \[{(1)^2} = 1\], we can write the above equation as
\[ \Rightarrow \int {\dfrac{{{{\left( 1 \right)}^2} - {{\left( {\sin x} \right)}^2}}}{{1 + \sin x}}} dx\]
Now using the property \[{a^2} - {b^2} = (a + b)(a - b)\] in numerator, we get
\[ \Rightarrow \int {\dfrac{{\left( {1 + \sin x} \right)\left( {1 - \sin x} \right)}}{{1 + \sin x}}dx} \]
Cancelling out \[1 + \sin x\] from numerator and denominator, we get
\[ \Rightarrow \int {\left( {1 - \sin x} \right)dx} \]
We know, \[ \Rightarrow \int {\left( {f(x) - g(x)} \right)dx} = \int {f(x)} dx - \int {g(x)} dx\]. So,
\[ \Rightarrow \int {\left( {1 - \sin x} \right)dx = \int 1 dx - \int {\sin x} dx} \]
Now, using \[\int 1 dx = x + c\]and \[\int {\sin x} dx = - \cos x + c\] in the above equation, we get
\[ \int {\left( {1 - \sin x} \right)dx = \int 1 dx - \int {\sin x} dx} \]
\[ \Rightarrow \int {\left( {1 - \sin x} \right)dx} = x + {c_1} - ( - \cos x + {c_2})\], where \[{c_1},{c_2}\] are constant terms
\[ \Rightarrow \int {\left( {1 - \sin x} \right)dx} = x + {c_1} + \cos x - {c_2}\]
Clubbing the constant terms together, we get
\[\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = x + \cos x + \left( {{c_1} - {c_2}} \right)\]
\[ \Rightarrow \int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = x + \cos x + c,\] where \[c = {c_1} - {c_2}\]
Hence, we got \[\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = x + \cos x + c\].
Therefore, the correct option is B.
Note: For such a question, the best way is to write the given expression in terms of \[\sin x\] and \[\cos x\]. Also, we need to be thorough with the trigonometric properties as well as integration formulas. While integrating, we forget to add the constant term and usually ignore the constant term. So, this needs to be taken care of. Also, while integrating \[\sin x\] and \[\cos x\], we usually get confused about where a negative sign is included and where it is not included.
Complete step by step answer:
We need to find \[\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} \].
Writing \[\cot x\] as \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] and \[\csc x\] as \[\csc x = \dfrac{1}{{\sin x}}\] in the integral, we get
\[ \Rightarrow \int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = \int {\dfrac{{{{\left( {\dfrac{{\cos x}}{{\sin x}}} \right)}^2}}}{{\left( {{{\left( {\dfrac{1}{{\sin x}}} \right)}^2} + \dfrac{1}{{\sin x}}} \right)}}dx} = \int {\dfrac{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}}{{\left( {\dfrac{1}{{{{\sin }^2}x}} + \dfrac{1}{{\sin x}}} \right)}}dx} \]
Taking LCM in the denominator, we have
\[ \Rightarrow \int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = \int {\dfrac{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}}{{\left( {\dfrac{1}{{{{\sin }^2}x}} + \dfrac{1}{{\sin x}}} \right)}}dx} = \int {\dfrac{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}}{{\left( {\dfrac{{1 + \sin x}}{{{{\sin }^2}x}}} \right)}}dx} \]
In simple way, we can write the integral as
\[\int {\left( {\left( {\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}} \right) \div \left( {\dfrac{{1 + \sin x}}{{{{\sin }^2}x}}} \right)} \right)dx} \]
We know, \[a \div b = a \times \dfrac{1}{b}\]. Using this, we get
\[ \Rightarrow \int {\left( {\left( {\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}} \right) \times \left( {\dfrac{1}{{\dfrac{{1 + \sin x}}{{{{\sin }^2}x}}}}} \right)} \right)dx} \]
\[ \Rightarrow \int {\left( {\left( {\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}} \right) \times \left( {\dfrac{{{{\sin }^2}x}}{{1 + \sin x}}} \right)} \right)dx} \]
Cancelling out \[{\sin ^2}x\] from numerator and denominator, we get
\[ \Rightarrow \int {\left( {\dfrac{{{{\cos }^2}x}}{{1 + \sin x}}} \right)dx} \]
Now using \[{\sin ^2}x + {\cos ^2}x = 1 \Leftrightarrow {\cos ^2}x = 1 - {\sin ^2}x\] in numerator, we get
\[ \Rightarrow \int {\left( {\dfrac{{1 - {{\sin }^2}x}}{{1 + \sin x}}} \right)dx} \]
As we know, \[{(1)^2} = 1\], we can write the above equation as
\[ \Rightarrow \int {\dfrac{{{{\left( 1 \right)}^2} - {{\left( {\sin x} \right)}^2}}}{{1 + \sin x}}} dx\]
Now using the property \[{a^2} - {b^2} = (a + b)(a - b)\] in numerator, we get
\[ \Rightarrow \int {\dfrac{{\left( {1 + \sin x} \right)\left( {1 - \sin x} \right)}}{{1 + \sin x}}dx} \]
Cancelling out \[1 + \sin x\] from numerator and denominator, we get
\[ \Rightarrow \int {\left( {1 - \sin x} \right)dx} \]
We know, \[ \Rightarrow \int {\left( {f(x) - g(x)} \right)dx} = \int {f(x)} dx - \int {g(x)} dx\]. So,
\[ \Rightarrow \int {\left( {1 - \sin x} \right)dx = \int 1 dx - \int {\sin x} dx} \]
Now, using \[\int 1 dx = x + c\]and \[\int {\sin x} dx = - \cos x + c\] in the above equation, we get
\[ \int {\left( {1 - \sin x} \right)dx = \int 1 dx - \int {\sin x} dx} \]
\[ \Rightarrow \int {\left( {1 - \sin x} \right)dx} = x + {c_1} - ( - \cos x + {c_2})\], where \[{c_1},{c_2}\] are constant terms
\[ \Rightarrow \int {\left( {1 - \sin x} \right)dx} = x + {c_1} + \cos x - {c_2}\]
Clubbing the constant terms together, we get
\[\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = x + \cos x + \left( {{c_1} - {c_2}} \right)\]
\[ \Rightarrow \int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = x + \cos x + c,\] where \[c = {c_1} - {c_2}\]
Hence, we got \[\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = x + \cos x + c\].
Therefore, the correct option is B.
Note: For such a question, the best way is to write the given expression in terms of \[\sin x\] and \[\cos x\]. Also, we need to be thorough with the trigonometric properties as well as integration formulas. While integrating, we forget to add the constant term and usually ignore the constant term. So, this needs to be taken care of. Also, while integrating \[\sin x\] and \[\cos x\], we usually get confused about where a negative sign is included and where it is not included.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

