
The value of $\int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} {\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}dx = \dfrac{A}{{\sqrt 3 }} + \dfrac{{{A^2}}}{{12}} - \dfrac{A}{4}\log \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$, then the value of A is:
A. $\pi $
B. $2\pi $
C. $3\pi $
D. None of these
Answer
588.9k+ views
Hint: We will first make the modification of putting x = -y and then put in the values accordingly, we will somehow get two times the integral we require to a definite value whose integral we can find easily and then compare that to the given RHS and find A.
Complete step-by-step answer:
Let $I = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} {\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}dx$ ……….(1)
Let us now put $x = - y$, then we will have to put $dx = - dy$ and the limits will interchange as well because when x will go to a, then –y will go to –a.
Hence, we will have:- $I = \int_{\dfrac{1}{{\sqrt 3 }}}^{ - \dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} {\cos ^{ - 1}}\dfrac{{ - 2y}}{{1 + {y^2}}}( - dy)$
We know that ${\cos ^{ - 1}}( - x) = \pi - {\cos ^{ - 1}}x$ for $ - 1 \leqslant x \leqslant 1$.
Using this, we will get:-
$I = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} \left[ {\pi - {{\cos }^{ - 1}}\left( {\dfrac{{2y}}{{1 + {y^2}}}} \right)} \right]dy$
Opening up the bracket on RHS will lead us to:-
$I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} dy - \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}{{\cos }^{ - 1}}\left( {\dfrac{{2y}}{{1 + {y^2}}}} \right)} dy$ …………(2)
Let ${I_1} = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} dy$ and ${I_2} = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}{{\cos }^{ - 1}}\left( {\dfrac{{2y}}{{1 + {y^2}}}} \right)} dy$
Replacing y by x in ${I_1}$ and ${I_2}$ will not change anything and we will get:-
${I_1} = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} dx$ ………….(3)
${I_2} = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}{{\cos }^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)} dx$ ……….(4)
Now, let we can clearly see that ${I_2} = I$ ……………(5)
Putting (3), (4) and (5) in (2), we will get:-
$I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} dx - I$
Taking the I from RHS to LHS, we will get:-
$ \Rightarrow 2I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} dx$
We can rewrite this as:-
$ \Rightarrow 2I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + {x^4} - 1}}{{1 - {x^4}}}} dx$
Now, rewriting it as:-
$ \Rightarrow 2I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\left[ { - 1 + \dfrac{1}{{1 - {x^4}}}} \right]} dx$
Now, rewriting it again as follows:-
$ \Rightarrow 2I = - \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {dx + \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx} $
On simplifying the RHS, we will get:-
$ \Rightarrow 2I = - \dfrac{2}{{\sqrt 3 }}\pi + \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx$ …………(6)
Let ${I_3} = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx$
We can see that ${I_3}$ is an even function because putting –x does not change it at all and we also know that: $\int_{ - a}^a {f(x)dx = 2} \int_0^a {f(x)dx} $ if $f(x)$ is an even function.
Therefore, we have:-
${I_3} = 2\int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx$
We can rewrite it as:-
$ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + 1 + {x^2} - {x^2}}}{{1 - {x^4}}}} dx$
Now we will use the formula:- ${a^2} - {b^2} = (a + b)(a - b)$
Therefore, we get:- $ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + 1 + {x^2} - {x^2}}}{{(1 - {x^2})(1 + {x^2})}}} dx$
Rewriting it as follows:-
$ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx + \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 + {x^2}}}} dx$ …………..(7)
Now, we will use the formula that:- $\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x$
Putting this in (7), we will get that:-
$ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx + {\tan ^{ - 1}}\dfrac{1}{{\sqrt 3 }} - {\tan ^{ - 1}}0$
On simplifying it, we will get:-
$ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx + \dfrac{\pi }{6}$ ……….(8)
Now, let ${I_4} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx$
We know that $\dfrac{1}{{1 - {x^2}}} = \dfrac{E}{{1 - x}} + \dfrac{F}{{1 + x}}$
On solving this, we will have:-
$1 = E(1 + x) + F(1 - x)$
Comparing both and solving, we will get:-
$\dfrac{1}{{1 - {x^2}}} = \dfrac{1}{{2(1 - x)}} + \dfrac{1}{{2(1 + x)}}$
Putting this in (8), we will get:-
${I_4} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{2(1 - x)}}} dx + \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{2(1 + x)}}} dx$
Now, we know that $\int {\dfrac{1}{x}dx} = \ln x$
So, we will get:- $\int {\dfrac{1}{{2(1 - x)}}dx} + \int {\dfrac{1}{{2(1 + x)}}dx} = - \dfrac{1}{2}\ln \left| {1 - x} \right| + \dfrac{1}{2}\ln \left| {1 + x} \right|$
Hence, $\int {\dfrac{1}{{2(1 - x)}}dx} + \int {\dfrac{1}{{2(1 + x)}}dx} = \dfrac{1}{2}\dfrac{{\ln \left| {1 + x} \right|}}{{\ln \left| {1 - x} \right|}}$ ( Because $\ln a - \ln b = \ln \dfrac{a}{b}$ )
So, ${I_4} = \dfrac{1}{2}\dfrac{{\ln \left| {\sqrt 3 + 1} \right|}}{{\ln \left| {\sqrt 3 - 1} \right|}}$
On rewriting it, we will get:-
${I_4} = - \dfrac{1}{2}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}}$ (Because $\ln {a^{ - 1}} = - \ln a$)
Putting this in (8), we will get:-
$ \Rightarrow {I_3} = - \dfrac{1}{2}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} + \dfrac{\pi }{6}$
Now putting this in (6), we will get:-
$ \Rightarrow 2I = - \dfrac{2}{{\sqrt 3 }}\pi - \dfrac{\pi }{2}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} + \dfrac{{{\pi ^2}}}{6}$
Hence, we get:-
$ \Rightarrow I = - \dfrac{1}{{\sqrt 3 }}\pi - \dfrac{\pi }{4}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} + \dfrac{{{\pi ^2}}}{{12}}$
Now comparing this to $\dfrac{A}{{\sqrt 3 }} + \dfrac{{{A^2}}}{{12}} - \dfrac{A}{4}\log \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$, we can clearly see that $A = \pi $.
So, the correct answer is “Option A”.
Note: The students must note that we have created a lot of I’s to reach the required integral, they may go in with the single integral as well but that can create a lot of confusion.
Alternate Way:-
Let us talk about the alternate method in brief:
We will use that:- ${\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}y$.
So, ${\cos ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = \dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = \dfrac{\pi }{2} - {\tan ^{ - 1}}x$ (By formula)
Now, use the fact that $\dfrac{{{x^4}}}{{1 - {x^4}}} 2{\tan ^{ - 1}}x$ is an odd function and keep on simplifying, you will get the required answer.
Complete step-by-step answer:
Let $I = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} {\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}dx$ ……….(1)
Let us now put $x = - y$, then we will have to put $dx = - dy$ and the limits will interchange as well because when x will go to a, then –y will go to –a.
Hence, we will have:- $I = \int_{\dfrac{1}{{\sqrt 3 }}}^{ - \dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} {\cos ^{ - 1}}\dfrac{{ - 2y}}{{1 + {y^2}}}( - dy)$
We know that ${\cos ^{ - 1}}( - x) = \pi - {\cos ^{ - 1}}x$ for $ - 1 \leqslant x \leqslant 1$.
Using this, we will get:-
$I = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} \left[ {\pi - {{\cos }^{ - 1}}\left( {\dfrac{{2y}}{{1 + {y^2}}}} \right)} \right]dy$
Opening up the bracket on RHS will lead us to:-
$I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} dy - \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}{{\cos }^{ - 1}}\left( {\dfrac{{2y}}{{1 + {y^2}}}} \right)} dy$ …………(2)
Let ${I_1} = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} dy$ and ${I_2} = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}{{\cos }^{ - 1}}\left( {\dfrac{{2y}}{{1 + {y^2}}}} \right)} dy$
Replacing y by x in ${I_1}$ and ${I_2}$ will not change anything and we will get:-
${I_1} = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} dx$ ………….(3)
${I_2} = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}{{\cos }^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)} dx$ ……….(4)
Now, let we can clearly see that ${I_2} = I$ ……………(5)
Putting (3), (4) and (5) in (2), we will get:-
$I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} dx - I$
Taking the I from RHS to LHS, we will get:-
$ \Rightarrow 2I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} dx$
We can rewrite this as:-
$ \Rightarrow 2I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + {x^4} - 1}}{{1 - {x^4}}}} dx$
Now, rewriting it as:-
$ \Rightarrow 2I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\left[ { - 1 + \dfrac{1}{{1 - {x^4}}}} \right]} dx$
Now, rewriting it again as follows:-
$ \Rightarrow 2I = - \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {dx + \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx} $
On simplifying the RHS, we will get:-
$ \Rightarrow 2I = - \dfrac{2}{{\sqrt 3 }}\pi + \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx$ …………(6)
Let ${I_3} = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx$
We can see that ${I_3}$ is an even function because putting –x does not change it at all and we also know that: $\int_{ - a}^a {f(x)dx = 2} \int_0^a {f(x)dx} $ if $f(x)$ is an even function.
Therefore, we have:-
${I_3} = 2\int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx$
We can rewrite it as:-
$ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + 1 + {x^2} - {x^2}}}{{1 - {x^4}}}} dx$
Now we will use the formula:- ${a^2} - {b^2} = (a + b)(a - b)$
Therefore, we get:- $ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + 1 + {x^2} - {x^2}}}{{(1 - {x^2})(1 + {x^2})}}} dx$
Rewriting it as follows:-
$ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx + \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 + {x^2}}}} dx$ …………..(7)
Now, we will use the formula that:- $\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x$
Putting this in (7), we will get that:-
$ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx + {\tan ^{ - 1}}\dfrac{1}{{\sqrt 3 }} - {\tan ^{ - 1}}0$
On simplifying it, we will get:-
$ \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx + \dfrac{\pi }{6}$ ……….(8)
Now, let ${I_4} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx$
We know that $\dfrac{1}{{1 - {x^2}}} = \dfrac{E}{{1 - x}} + \dfrac{F}{{1 + x}}$
On solving this, we will have:-
$1 = E(1 + x) + F(1 - x)$
Comparing both and solving, we will get:-
$\dfrac{1}{{1 - {x^2}}} = \dfrac{1}{{2(1 - x)}} + \dfrac{1}{{2(1 + x)}}$
Putting this in (8), we will get:-
${I_4} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{2(1 - x)}}} dx + \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{2(1 + x)}}} dx$
Now, we know that $\int {\dfrac{1}{x}dx} = \ln x$
So, we will get:- $\int {\dfrac{1}{{2(1 - x)}}dx} + \int {\dfrac{1}{{2(1 + x)}}dx} = - \dfrac{1}{2}\ln \left| {1 - x} \right| + \dfrac{1}{2}\ln \left| {1 + x} \right|$
Hence, $\int {\dfrac{1}{{2(1 - x)}}dx} + \int {\dfrac{1}{{2(1 + x)}}dx} = \dfrac{1}{2}\dfrac{{\ln \left| {1 + x} \right|}}{{\ln \left| {1 - x} \right|}}$ ( Because $\ln a - \ln b = \ln \dfrac{a}{b}$ )
So, ${I_4} = \dfrac{1}{2}\dfrac{{\ln \left| {\sqrt 3 + 1} \right|}}{{\ln \left| {\sqrt 3 - 1} \right|}}$
On rewriting it, we will get:-
${I_4} = - \dfrac{1}{2}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}}$ (Because $\ln {a^{ - 1}} = - \ln a$)
Putting this in (8), we will get:-
$ \Rightarrow {I_3} = - \dfrac{1}{2}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} + \dfrac{\pi }{6}$
Now putting this in (6), we will get:-
$ \Rightarrow 2I = - \dfrac{2}{{\sqrt 3 }}\pi - \dfrac{\pi }{2}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} + \dfrac{{{\pi ^2}}}{6}$
Hence, we get:-
$ \Rightarrow I = - \dfrac{1}{{\sqrt 3 }}\pi - \dfrac{\pi }{4}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} + \dfrac{{{\pi ^2}}}{{12}}$
Now comparing this to $\dfrac{A}{{\sqrt 3 }} + \dfrac{{{A^2}}}{{12}} - \dfrac{A}{4}\log \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$, we can clearly see that $A = \pi $.
So, the correct answer is “Option A”.
Note: The students must note that we have created a lot of I’s to reach the required integral, they may go in with the single integral as well but that can create a lot of confusion.
Alternate Way:-
Let us talk about the alternate method in brief:
We will use that:- ${\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}y$.
So, ${\cos ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = \dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = \dfrac{\pi }{2} - {\tan ^{ - 1}}x$ (By formula)
Now, use the fact that $\dfrac{{{x^4}}}{{1 - {x^4}}} 2{\tan ^{ - 1}}x$ is an odd function and keep on simplifying, you will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

