
The value of \[I = \smallint _{\pi /2}^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx\] is
A. 1
B. $\pi $
C. $e$
D. $\dfrac{\pi }{2}$
Answer
615.6k+ views
Hint: Split the integral into two different integrals using limits. And then use property of definite integrals to evaluate the integral.
Complete step-by-step answer:
According to the question, the given integral is:
\[ \Rightarrow I = \smallint _{\pi /2}^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx\]
The limit of the integration is from the $\dfrac{\pi }{2}$ to $\dfrac{{5\pi }}{2}$. According to the property of definite integral, we can split the limit into two parts i.e. from $\dfrac{\pi }{2}$ to $\pi $ and from $\pi $ to $\dfrac{{5\pi }}{2}$. Doing so, we’ll get:\[ \Rightarrow I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx .....(i)\]
Now, another property of definite integral is:
\[ \Rightarrow \smallint _a^bf(x)dx = \smallint _a^bf(a + b - x)dx\].
Using this property for the above integral, we’ll get:
$ \Rightarrow $\[I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {3\pi /2 - x} \right)} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {3\pi /2 - x} \right)} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\cos \left( {3\pi /2 - x} \right)} \right)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {7\pi /2 - x} \right)} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {7\pi /2 - x} \right)} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\cos \left( {7\pi /2 - x} \right)} \right)}}}}dx\]
We know that \[\sin \left( {3\pi /2 - x} \right) = \cos x,\cos \left( {3\pi /2 - x} \right) = \sin x,\sin \left( {7\pi /2 - x} \right) = \cos x\] and \[\cos \left( {7\pi /2 - x} \right) = \sin x\]. Using these values, we’ll get:
\[I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\sin x} \right)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\sin x} \right)}}}}dx .....(ii)\]
Adding equation \[(i)\] and \[(ii)\], we’ll get:
\[
\Rightarrow 2I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx \\
\Rightarrow 2I = \smallint _{\pi /2}^\pi dx + \smallint _\pi ^{5\pi /2}dx \\
\]
\[
\Rightarrow 2I = \left[ x \right]_{\pi /2}^\pi + \left[ x \right]_\pi ^{5\pi /2} \\
\Rightarrow 2I = \pi - \dfrac{\pi }{2} + \dfrac{{5\pi }}{2} - \pi \\
\Rightarrow 2I = 2\pi \\
\Rightarrow I = \pi \\
\]
Thus the value of integral is \[\pi \].
Note: We can split a definite integral up into two integrals with the same integrand but different limits. Integration can be interpreted as the area under the curve within a particular limit. By splitting the integral into two parts means we are splitting the areas under the curve into two different continuous limits. The value of the integral is the sum of two areas.
Complete step-by-step answer:
According to the question, the given integral is:
\[ \Rightarrow I = \smallint _{\pi /2}^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx\]
The limit of the integration is from the $\dfrac{\pi }{2}$ to $\dfrac{{5\pi }}{2}$. According to the property of definite integral, we can split the limit into two parts i.e. from $\dfrac{\pi }{2}$ to $\pi $ and from $\pi $ to $\dfrac{{5\pi }}{2}$. Doing so, we’ll get:\[ \Rightarrow I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx .....(i)\]
Now, another property of definite integral is:
\[ \Rightarrow \smallint _a^bf(x)dx = \smallint _a^bf(a + b - x)dx\].
Using this property for the above integral, we’ll get:
$ \Rightarrow $\[I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {3\pi /2 - x} \right)} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {3\pi /2 - x} \right)} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\cos \left( {3\pi /2 - x} \right)} \right)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {7\pi /2 - x} \right)} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {7\pi /2 - x} \right)} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\cos \left( {7\pi /2 - x} \right)} \right)}}}}dx\]
We know that \[\sin \left( {3\pi /2 - x} \right) = \cos x,\cos \left( {3\pi /2 - x} \right) = \sin x,\sin \left( {7\pi /2 - x} \right) = \cos x\] and \[\cos \left( {7\pi /2 - x} \right) = \sin x\]. Using these values, we’ll get:
\[I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\sin x} \right)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\sin x} \right)}}}}dx .....(ii)\]
Adding equation \[(i)\] and \[(ii)\], we’ll get:
\[
\Rightarrow 2I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx \\
\Rightarrow 2I = \smallint _{\pi /2}^\pi dx + \smallint _\pi ^{5\pi /2}dx \\
\]
\[
\Rightarrow 2I = \left[ x \right]_{\pi /2}^\pi + \left[ x \right]_\pi ^{5\pi /2} \\
\Rightarrow 2I = \pi - \dfrac{\pi }{2} + \dfrac{{5\pi }}{2} - \pi \\
\Rightarrow 2I = 2\pi \\
\Rightarrow I = \pi \\
\]
Thus the value of integral is \[\pi \].
Note: We can split a definite integral up into two integrals with the same integrand but different limits. Integration can be interpreted as the area under the curve within a particular limit. By splitting the integral into two parts means we are splitting the areas under the curve into two different continuous limits. The value of the integral is the sum of two areas.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

