
The value of given trigonometric expression $\cos ec 2A - \cot 2A - \tan A = $.
Answer
515.4k+ views
Hint- In this question, we use the concept of double angle trigonometric identities. Whenever we face a double angle in any problem so we can convert it into half of that angle. We use trigonometric identities $\sin 2A = 2\sin A\cos A{\text{ }}$ and $\cos 2A = 1 - 2{\sin ^2}A$ .
Complete step-by-step solution -
Now, we have to find value of $\cos ec 2A - \cot 2A - \tan A$
As we know we can convert double angle trigonometric terms like $\sin 2A $ and $\cos 2A $ into half of that angle like $\sin A and \cos A.$
So, first we convert $ \cos ec 2A $ and $\cot 2A$ into $\sin 2A $ and $ \cos 2A $
$
\Rightarrow \cos ec 2A - \cot 2A - \tan A \\
\Rightarrow \dfrac{1}{{\sin 2A}} - \frac{{\cos 2A}}{{\sin 2A}} - \tan A \\
\Rightarrow \dfrac{{1 - \cos 2A}}{{\sin 2A}} - \tan A \\
$
We can see double angle trigonometric term so we convert into half of that angle by using identities, $\sin 2A = 2\sin A\cos A{\text{ }}$ and $\cos 2A = 1 - 2{\sin ^2}A$ .
$
\Rightarrow \dfrac{{1 - \left( {1 - 2{{\sin }^2}A} \right)}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{1 - 1 + 2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
$
Cancel 2sinA from numerator as well as denominator,
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} - \tan A$
As we know, $\dfrac{{\sin A}}{{\cos A}} = \tan A$
$
\Rightarrow \tan A - \tan A \\
\Rightarrow 0 \\
$
So, the value of $\cos ec2A - \cot 2A - \tan A$ is 0.
Note- We can solve any trigonometric problem at least two ways by using different identities. First way we already mentioned above and in second way, we use trigonometric identity $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$ and also use $\tan A = \dfrac{{\sin A}}{{\cos A}}$ .
Now, $\cos ec 2A - \cot 2A - \tan A$
We can write as, $\cos ec 2A - \left( {\dfrac{1}{{\tan 2A}} + \tan A} \right)$
We use $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A}}{{2\tan A}} + \tan A} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A + 2{{\tan }^2}A}}{{2\tan A}}} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 + {{\tan }^2}A}}{{2\tan A}}} \right) \\
$
Now use, $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{2\sin A\cos A}}} \right)$
As we know, ${\sin ^2}A + {\cos ^2}A = 1$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{1}{{2\sin A\cos A}}} \right)$
We know, $\sin 2A = 2\sin A\cos A{\text{ }}$
$
\Rightarrow \cos ec 2A - \dfrac{1}{{\sin 2A}} \\
\Rightarrow \cos ec 2A - \cos ec2A \\
\Rightarrow 0 \\
$
Complete step-by-step solution -
Now, we have to find value of $\cos ec 2A - \cot 2A - \tan A$
As we know we can convert double angle trigonometric terms like $\sin 2A $ and $\cos 2A $ into half of that angle like $\sin A and \cos A.$
So, first we convert $ \cos ec 2A $ and $\cot 2A$ into $\sin 2A $ and $ \cos 2A $
$
\Rightarrow \cos ec 2A - \cot 2A - \tan A \\
\Rightarrow \dfrac{1}{{\sin 2A}} - \frac{{\cos 2A}}{{\sin 2A}} - \tan A \\
\Rightarrow \dfrac{{1 - \cos 2A}}{{\sin 2A}} - \tan A \\
$
We can see double angle trigonometric term so we convert into half of that angle by using identities, $\sin 2A = 2\sin A\cos A{\text{ }}$ and $\cos 2A = 1 - 2{\sin ^2}A$ .
$
\Rightarrow \dfrac{{1 - \left( {1 - 2{{\sin }^2}A} \right)}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{1 - 1 + 2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
$
Cancel 2sinA from numerator as well as denominator,
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} - \tan A$
As we know, $\dfrac{{\sin A}}{{\cos A}} = \tan A$
$
\Rightarrow \tan A - \tan A \\
\Rightarrow 0 \\
$
So, the value of $\cos ec2A - \cot 2A - \tan A$ is 0.
Note- We can solve any trigonometric problem at least two ways by using different identities. First way we already mentioned above and in second way, we use trigonometric identity $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$ and also use $\tan A = \dfrac{{\sin A}}{{\cos A}}$ .
Now, $\cos ec 2A - \cot 2A - \tan A$
We can write as, $\cos ec 2A - \left( {\dfrac{1}{{\tan 2A}} + \tan A} \right)$
We use $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A}}{{2\tan A}} + \tan A} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A + 2{{\tan }^2}A}}{{2\tan A}}} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 + {{\tan }^2}A}}{{2\tan A}}} \right) \\
$
Now use, $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{2\sin A\cos A}}} \right)$
As we know, ${\sin ^2}A + {\cos ^2}A = 1$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{1}{{2\sin A\cos A}}} \right)$
We know, $\sin 2A = 2\sin A\cos A{\text{ }}$
$
\Rightarrow \cos ec 2A - \dfrac{1}{{\sin 2A}} \\
\Rightarrow \cos ec 2A - \cos ec2A \\
\Rightarrow 0 \\
$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
