
The value of given trigonometric expression $\cos ec 2A - \cot 2A - \tan A = $.
Answer
613.2k+ views
Hint- In this question, we use the concept of double angle trigonometric identities. Whenever we face a double angle in any problem so we can convert it into half of that angle. We use trigonometric identities $\sin 2A = 2\sin A\cos A{\text{ }}$ and $\cos 2A = 1 - 2{\sin ^2}A$ .
Complete step-by-step solution -
Now, we have to find value of $\cos ec 2A - \cot 2A - \tan A$
As we know we can convert double angle trigonometric terms like $\sin 2A $ and $\cos 2A $ into half of that angle like $\sin A and \cos A.$
So, first we convert $ \cos ec 2A $ and $\cot 2A$ into $\sin 2A $ and $ \cos 2A $
$
\Rightarrow \cos ec 2A - \cot 2A - \tan A \\
\Rightarrow \dfrac{1}{{\sin 2A}} - \frac{{\cos 2A}}{{\sin 2A}} - \tan A \\
\Rightarrow \dfrac{{1 - \cos 2A}}{{\sin 2A}} - \tan A \\
$
We can see double angle trigonometric term so we convert into half of that angle by using identities, $\sin 2A = 2\sin A\cos A{\text{ }}$ and $\cos 2A = 1 - 2{\sin ^2}A$ .
$
\Rightarrow \dfrac{{1 - \left( {1 - 2{{\sin }^2}A} \right)}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{1 - 1 + 2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
$
Cancel 2sinA from numerator as well as denominator,
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} - \tan A$
As we know, $\dfrac{{\sin A}}{{\cos A}} = \tan A$
$
\Rightarrow \tan A - \tan A \\
\Rightarrow 0 \\
$
So, the value of $\cos ec2A - \cot 2A - \tan A$ is 0.
Note- We can solve any trigonometric problem at least two ways by using different identities. First way we already mentioned above and in second way, we use trigonometric identity $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$ and also use $\tan A = \dfrac{{\sin A}}{{\cos A}}$ .
Now, $\cos ec 2A - \cot 2A - \tan A$
We can write as, $\cos ec 2A - \left( {\dfrac{1}{{\tan 2A}} + \tan A} \right)$
We use $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A}}{{2\tan A}} + \tan A} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A + 2{{\tan }^2}A}}{{2\tan A}}} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 + {{\tan }^2}A}}{{2\tan A}}} \right) \\
$
Now use, $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{2\sin A\cos A}}} \right)$
As we know, ${\sin ^2}A + {\cos ^2}A = 1$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{1}{{2\sin A\cos A}}} \right)$
We know, $\sin 2A = 2\sin A\cos A{\text{ }}$
$
\Rightarrow \cos ec 2A - \dfrac{1}{{\sin 2A}} \\
\Rightarrow \cos ec 2A - \cos ec2A \\
\Rightarrow 0 \\
$
Complete step-by-step solution -
Now, we have to find value of $\cos ec 2A - \cot 2A - \tan A$
As we know we can convert double angle trigonometric terms like $\sin 2A $ and $\cos 2A $ into half of that angle like $\sin A and \cos A.$
So, first we convert $ \cos ec 2A $ and $\cot 2A$ into $\sin 2A $ and $ \cos 2A $
$
\Rightarrow \cos ec 2A - \cot 2A - \tan A \\
\Rightarrow \dfrac{1}{{\sin 2A}} - \frac{{\cos 2A}}{{\sin 2A}} - \tan A \\
\Rightarrow \dfrac{{1 - \cos 2A}}{{\sin 2A}} - \tan A \\
$
We can see double angle trigonometric term so we convert into half of that angle by using identities, $\sin 2A = 2\sin A\cos A{\text{ }}$ and $\cos 2A = 1 - 2{\sin ^2}A$ .
$
\Rightarrow \dfrac{{1 - \left( {1 - 2{{\sin }^2}A} \right)}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{1 - 1 + 2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
$
Cancel 2sinA from numerator as well as denominator,
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} - \tan A$
As we know, $\dfrac{{\sin A}}{{\cos A}} = \tan A$
$
\Rightarrow \tan A - \tan A \\
\Rightarrow 0 \\
$
So, the value of $\cos ec2A - \cot 2A - \tan A$ is 0.
Note- We can solve any trigonometric problem at least two ways by using different identities. First way we already mentioned above and in second way, we use trigonometric identity $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$ and also use $\tan A = \dfrac{{\sin A}}{{\cos A}}$ .
Now, $\cos ec 2A - \cot 2A - \tan A$
We can write as, $\cos ec 2A - \left( {\dfrac{1}{{\tan 2A}} + \tan A} \right)$
We use $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A}}{{2\tan A}} + \tan A} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A + 2{{\tan }^2}A}}{{2\tan A}}} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 + {{\tan }^2}A}}{{2\tan A}}} \right) \\
$
Now use, $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{2\sin A\cos A}}} \right)$
As we know, ${\sin ^2}A + {\cos ^2}A = 1$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{1}{{2\sin A\cos A}}} \right)$
We know, $\sin 2A = 2\sin A\cos A{\text{ }}$
$
\Rightarrow \cos ec 2A - \dfrac{1}{{\sin 2A}} \\
\Rightarrow \cos ec 2A - \cos ec2A \\
\Rightarrow 0 \\
$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

