
The value of given trigonometric expression $\cos ec 2A - \cot 2A - \tan A = $.
Answer
598.8k+ views
Hint- In this question, we use the concept of double angle trigonometric identities. Whenever we face a double angle in any problem so we can convert it into half of that angle. We use trigonometric identities $\sin 2A = 2\sin A\cos A{\text{ }}$ and $\cos 2A = 1 - 2{\sin ^2}A$ .
Complete step-by-step solution -
Now, we have to find value of $\cos ec 2A - \cot 2A - \tan A$
As we know we can convert double angle trigonometric terms like $\sin 2A $ and $\cos 2A $ into half of that angle like $\sin A and \cos A.$
So, first we convert $ \cos ec 2A $ and $\cot 2A$ into $\sin 2A $ and $ \cos 2A $
$
\Rightarrow \cos ec 2A - \cot 2A - \tan A \\
\Rightarrow \dfrac{1}{{\sin 2A}} - \frac{{\cos 2A}}{{\sin 2A}} - \tan A \\
\Rightarrow \dfrac{{1 - \cos 2A}}{{\sin 2A}} - \tan A \\
$
We can see double angle trigonometric term so we convert into half of that angle by using identities, $\sin 2A = 2\sin A\cos A{\text{ }}$ and $\cos 2A = 1 - 2{\sin ^2}A$ .
$
\Rightarrow \dfrac{{1 - \left( {1 - 2{{\sin }^2}A} \right)}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{1 - 1 + 2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
$
Cancel 2sinA from numerator as well as denominator,
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} - \tan A$
As we know, $\dfrac{{\sin A}}{{\cos A}} = \tan A$
$
\Rightarrow \tan A - \tan A \\
\Rightarrow 0 \\
$
So, the value of $\cos ec2A - \cot 2A - \tan A$ is 0.
Note- We can solve any trigonometric problem at least two ways by using different identities. First way we already mentioned above and in second way, we use trigonometric identity $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$ and also use $\tan A = \dfrac{{\sin A}}{{\cos A}}$ .
Now, $\cos ec 2A - \cot 2A - \tan A$
We can write as, $\cos ec 2A - \left( {\dfrac{1}{{\tan 2A}} + \tan A} \right)$
We use $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A}}{{2\tan A}} + \tan A} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A + 2{{\tan }^2}A}}{{2\tan A}}} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 + {{\tan }^2}A}}{{2\tan A}}} \right) \\
$
Now use, $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{2\sin A\cos A}}} \right)$
As we know, ${\sin ^2}A + {\cos ^2}A = 1$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{1}{{2\sin A\cos A}}} \right)$
We know, $\sin 2A = 2\sin A\cos A{\text{ }}$
$
\Rightarrow \cos ec 2A - \dfrac{1}{{\sin 2A}} \\
\Rightarrow \cos ec 2A - \cos ec2A \\
\Rightarrow 0 \\
$
Complete step-by-step solution -
Now, we have to find value of $\cos ec 2A - \cot 2A - \tan A$
As we know we can convert double angle trigonometric terms like $\sin 2A $ and $\cos 2A $ into half of that angle like $\sin A and \cos A.$
So, first we convert $ \cos ec 2A $ and $\cot 2A$ into $\sin 2A $ and $ \cos 2A $
$
\Rightarrow \cos ec 2A - \cot 2A - \tan A \\
\Rightarrow \dfrac{1}{{\sin 2A}} - \frac{{\cos 2A}}{{\sin 2A}} - \tan A \\
\Rightarrow \dfrac{{1 - \cos 2A}}{{\sin 2A}} - \tan A \\
$
We can see double angle trigonometric term so we convert into half of that angle by using identities, $\sin 2A = 2\sin A\cos A{\text{ }}$ and $\cos 2A = 1 - 2{\sin ^2}A$ .
$
\Rightarrow \dfrac{{1 - \left( {1 - 2{{\sin }^2}A} \right)}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{1 - 1 + 2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
\Rightarrow \dfrac{{2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\
$
Cancel 2sinA from numerator as well as denominator,
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} - \tan A$
As we know, $\dfrac{{\sin A}}{{\cos A}} = \tan A$
$
\Rightarrow \tan A - \tan A \\
\Rightarrow 0 \\
$
So, the value of $\cos ec2A - \cot 2A - \tan A$ is 0.
Note- We can solve any trigonometric problem at least two ways by using different identities. First way we already mentioned above and in second way, we use trigonometric identity $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$ and also use $\tan A = \dfrac{{\sin A}}{{\cos A}}$ .
Now, $\cos ec 2A - \cot 2A - \tan A$
We can write as, $\cos ec 2A - \left( {\dfrac{1}{{\tan 2A}} + \tan A} \right)$
We use $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A}}{{2\tan A}} + \tan A} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A + 2{{\tan }^2}A}}{{2\tan A}}} \right) \\
\Rightarrow \cos ec 2A - \left( {\dfrac{{1 + {{\tan }^2}A}}{{2\tan A}}} \right) \\
$
Now use, $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{2\sin A\cos A}}} \right)$
As we know, ${\sin ^2}A + {\cos ^2}A = 1$
$ \Rightarrow \cos ec 2A - \left( {\dfrac{1}{{2\sin A\cos A}}} \right)$
We know, $\sin 2A = 2\sin A\cos A{\text{ }}$
$
\Rightarrow \cos ec 2A - \dfrac{1}{{\sin 2A}} \\
\Rightarrow \cos ec 2A - \cos ec2A \\
\Rightarrow 0 \\
$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

