
The value of following trigonometric expression \[[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}\]] is equal to:
A. 2${\cos ^2}{\text{A}}$+1
B. 2${\cos ^2}{\text{A}}$−1
C. 2${\sin ^2}{\text{A}}$−1
D. 2${\sin ^2}{\text{A}}$+1
Answer
611.7k+ views
Hint- Proceed the solution of this question, fist identify that there is even power on trigonometric terms so that we can factorise this using available algebraic identity using the difference of square which states as (${{\text{a}}^2} - {{\text{b}}^2}$) = (a+b)(a-b).
Complete step by step answer:
So, by given equation can be written as
⇒\[{\left( {{\text{co}}{{\text{s}}^2}{\text{A}}} \right)^2} - {\left( {{{\sin }^2}{\text{A}}} \right)^2}\]
So on comparing this with the identity difference of square, (${{\text{a}}^2} - {{\text{b}}^2}$) = (a+b)(a-b)
⇒\[{\text{a = co}}{{\text{s}}^2}{\text{A & b = si}}{{\text{n}}^2}{\text{A}}\]
So applying identity we get
⇒ \[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}\] = \[\left( {{\text{co}}{{\text{s}}^2}{\text{A}} - {{\sin }^2}{\text{A}}} \right)\left( {{\text{co}}{{\text{s}}^2}{\text{A + }}{{\sin }^2}{\text{A}}} \right)\]…….(1)
Since we know that \[{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}\]
So on putting \[{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}\] in equation (1)
⇒\[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}\]= \[{\text{co}}{{\text{s}}^2}{\text{A}} - {\sin ^2}{\text{A}}\]
Now we know that \[{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}\], which can be written as \[{\sin ^2}{\text{A = 1 - co}}{{\text{s}}^2}{\text{A}}\]
⇒\[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}\]= \[{\text{co}}{{\text{s}}^2}{\text{A}} - (1 - {\text{co}}{{\text{s}}^2}{\text{A}})\]
On further solving
⇒\[{\text{co}}{{\text{s}}^2}{\text{A}} - (1 - {\text{co}}{{\text{s}}^2}{\text{A}})\] = \[{\text{co}}{{\text{s}}^2}{\text{A}} - 1 + {\text{co}}{{\text{s}}^2}{\text{A = 2co}}{{\text{s}}^2}{\text{A - 1}}\]
⇒\[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}\] \[{\text{ = 2co}}{{\text{s}}^2}{\text{A - 1}}\]
Hence, the option B , 2${\cos ^2}{\text{A}}$−1 is the correct answer.
Note: There is also an alternative approach to solve this question-
Since we know that \[{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}\]
which can be written as \[{\sin ^2}{\text{A = 1 - co}}{{\text{s}}^2}{\text{A}}\]
So replacing the \[{\sin ^2}{\text{A }}\] term by \[{\text{1 - co}}{{\text{s}}^2}{\text{A}}\] in the above question
\[ \Rightarrow {\text{co}}{{\text{s}}^4}{\text{A}} - {\left( {1 - {{\cos }^2}{\text{A}}} \right)^2}\]
\[ \Rightarrow {\text{co}}{{\text{s}}^4}{\text{A}} - \left( {{\text{co}}{{\text{s}}^4}{\text{A}} + 1 - 2{{\cos }^2}{\text{A}}} \right)\]
\[ \Rightarrow {\text{co}}{{\text{s}}^4}{\text{A}} - {\text{co}}{{\text{s}}^4}{\text{A - }}1 + 2{\cos ^2}{\text{A}}\]
On further solving
\[{\text{ = 2co}}{{\text{s}}^2}{\text{A - 1}}\]
Complete step by step answer:
So, by given equation can be written as
⇒\[{\left( {{\text{co}}{{\text{s}}^2}{\text{A}}} \right)^2} - {\left( {{{\sin }^2}{\text{A}}} \right)^2}\]
So on comparing this with the identity difference of square, (${{\text{a}}^2} - {{\text{b}}^2}$) = (a+b)(a-b)
⇒\[{\text{a = co}}{{\text{s}}^2}{\text{A & b = si}}{{\text{n}}^2}{\text{A}}\]
So applying identity we get
⇒ \[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}\] = \[\left( {{\text{co}}{{\text{s}}^2}{\text{A}} - {{\sin }^2}{\text{A}}} \right)\left( {{\text{co}}{{\text{s}}^2}{\text{A + }}{{\sin }^2}{\text{A}}} \right)\]…….(1)
Since we know that \[{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}\]
So on putting \[{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}\] in equation (1)
⇒\[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}\]= \[{\text{co}}{{\text{s}}^2}{\text{A}} - {\sin ^2}{\text{A}}\]
Now we know that \[{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}\], which can be written as \[{\sin ^2}{\text{A = 1 - co}}{{\text{s}}^2}{\text{A}}\]
⇒\[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}\]= \[{\text{co}}{{\text{s}}^2}{\text{A}} - (1 - {\text{co}}{{\text{s}}^2}{\text{A}})\]
On further solving
⇒\[{\text{co}}{{\text{s}}^2}{\text{A}} - (1 - {\text{co}}{{\text{s}}^2}{\text{A}})\] = \[{\text{co}}{{\text{s}}^2}{\text{A}} - 1 + {\text{co}}{{\text{s}}^2}{\text{A = 2co}}{{\text{s}}^2}{\text{A - 1}}\]
⇒\[{\text{co}}{{\text{s}}^4}{\text{A}} - {\sin ^4}{\text{A}}\] \[{\text{ = 2co}}{{\text{s}}^2}{\text{A - 1}}\]
Hence, the option B , 2${\cos ^2}{\text{A}}$−1 is the correct answer.
Note: There is also an alternative approach to solve this question-
Since we know that \[{\text{co}}{{\text{s}}^2}{\text{A + }}{\sin ^2}{\text{A = 1}}\]
which can be written as \[{\sin ^2}{\text{A = 1 - co}}{{\text{s}}^2}{\text{A}}\]
So replacing the \[{\sin ^2}{\text{A }}\] term by \[{\text{1 - co}}{{\text{s}}^2}{\text{A}}\] in the above question
\[ \Rightarrow {\text{co}}{{\text{s}}^4}{\text{A}} - {\left( {1 - {{\cos }^2}{\text{A}}} \right)^2}\]
\[ \Rightarrow {\text{co}}{{\text{s}}^4}{\text{A}} - \left( {{\text{co}}{{\text{s}}^4}{\text{A}} + 1 - 2{{\cos }^2}{\text{A}}} \right)\]
\[ \Rightarrow {\text{co}}{{\text{s}}^4}{\text{A}} - {\text{co}}{{\text{s}}^4}{\text{A - }}1 + 2{\cos ^2}{\text{A}}\]
On further solving
\[{\text{ = 2co}}{{\text{s}}^2}{\text{A - 1}}\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

