
The value of following integral $\int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} + \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} $ is equal to
$\left( a \right)$ 1
$\left( b \right)$ -1
$\left( c \right)$ 0
$\left( d \right)$ -2
Answer
580.2k+ views
Hint: In this particular question solve the integral parts separately using integration by substitution method (I.e. change the variable by substation so that integral becomes simple don’t forget to change the limits as well), so use these concepts to reach the solution of the question.
Complete step-by-step answer:
$\int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} + \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} $
Let, I = $\int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} + \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} $
Let, ${I_1} = \int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} $
And, ${I_2} = \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} $
Therefore, $I = {I_1} + {I_2}$.................. (1)
So first simplify first integral we have,
$ \Rightarrow {I_1} = \int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} $.................... (2)
In the above integral substitute (x + 5) = t............ (3)
Now differentiate equation (3) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {x + 5} \right) = \dfrac{{dt}}{{dx}}$
$ \Rightarrow dx = dt$
Now change the integral limits.
So when, x= -4, so from equation (3) we have,
$ \Rightarrow - 4 + 5 = t$
$ \Rightarrow t = 1$
Now when, x = -5, so from equation (1) we have,
$ \Rightarrow - 5 + 5 = t$
$ \Rightarrow t = 0$
So integral limits is changed from (1 to 0)
Now substitute these values in equation (2) we have,
$ \Rightarrow {I_1} = \int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} = \int_1^0 {{e^{{t^2}}}dt} $............... (4)
Now simplify integral ${I_2}$ we have,
${I_2} = \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} $................. (5)
In the above integral substitute ($x - \dfrac{2}{3} = \dfrac{t}{3}$)............ (6)
Now differentiate equation (6) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {x - \dfrac{2}{3}} \right) = \dfrac{d}{{dx}}\left( {\dfrac{t}{3}} \right)$
$ \Rightarrow 3dx = dt$
Now change the integral limits.
So when, x = (1/3), so from equation (6) we have,
$ \Rightarrow \dfrac{1}{3} - \dfrac{2}{3} = \dfrac{t}{3}$
$ \Rightarrow t = - 1$
Now when, x = (2/3), so from equation (6) we have,
$ \Rightarrow \dfrac{2}{3} - \dfrac{2}{3} = \dfrac{t}{3}$
$ \Rightarrow t = 0$
So integral limits is changed from (-1 to 0)
Now substitute these values in equation (5) we have,
$ \Rightarrow {I_2} = \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} = \int_{ - 1}^0 {{e^{9{{\left( {\dfrac{t}{3}} \right)}^2}}}dt} = \int_{ - 1}^0 {{e^{{t^2}}}dt} $............... (7)
Now substitute the value from equations (4) and (7) in equation (1) we have,
$ \Rightarrow I = \int_1^0 {{e^{{t^2}}}dt} + \int_{ - 1}^0 {{e^{{t^2}}}dt} $
Now according to definite integral property if function is even than $\int_{ - a}^0 {f\left( x \right)dx} = - \int_a^0 {f\left( x \right)dx} $ so use this property in the above equation we have,
As we all know that for function to be even f (-x) = f (x)
So in the above integral, $f\left( t \right) = {e^{{t^2}}}$
Therefore, $f\left( { - t} \right) = {e^{{{\left( { - t} \right)}^2}}} = {e^{{t^2}}}$
So the integral function is even.
$ \Rightarrow I = \int_1^0 {{e^{{t^2}}}dt} + \int_{ - 1}^0 {{e^{{t^2}}}dt} = \int_1^0 {{e^{{t^2}}}dt} - \int_1^0 {{e^{{t^2}}}dt} $
$ \Rightarrow I = \int_1^0 {{e^{{t^2}}}dt} - \int_1^0 {{e^{{t^2}}}dt} = 0$
So this is the required answer.
Hence option (C) is the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember is that according to definite integral property, $\int_{ - a}^0 {f\left( x \right)dx} = - \int_a^0 {f\left( x \right)dx} $ if and only if the function f (x) is even, and the condition of even function is, f (-x) = f (x).so first simplify the integral using integration by substitution as above then applied above described properties we will get the required answer.
Complete step-by-step answer:
$\int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} + \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} $
Let, I = $\int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} + \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} $
Let, ${I_1} = \int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} $
And, ${I_2} = \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} $
Therefore, $I = {I_1} + {I_2}$.................. (1)
So first simplify first integral we have,
$ \Rightarrow {I_1} = \int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} $.................... (2)
In the above integral substitute (x + 5) = t............ (3)
Now differentiate equation (3) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {x + 5} \right) = \dfrac{{dt}}{{dx}}$
$ \Rightarrow dx = dt$
Now change the integral limits.
So when, x= -4, so from equation (3) we have,
$ \Rightarrow - 4 + 5 = t$
$ \Rightarrow t = 1$
Now when, x = -5, so from equation (1) we have,
$ \Rightarrow - 5 + 5 = t$
$ \Rightarrow t = 0$
So integral limits is changed from (1 to 0)
Now substitute these values in equation (2) we have,
$ \Rightarrow {I_1} = \int_{ - 4}^{ - 5} {{e^{{{\left( {x + 5} \right)}^2}}}dx} = \int_1^0 {{e^{{t^2}}}dt} $............... (4)
Now simplify integral ${I_2}$ we have,
${I_2} = \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} $................. (5)
In the above integral substitute ($x - \dfrac{2}{3} = \dfrac{t}{3}$)............ (6)
Now differentiate equation (6) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {x - \dfrac{2}{3}} \right) = \dfrac{d}{{dx}}\left( {\dfrac{t}{3}} \right)$
$ \Rightarrow 3dx = dt$
Now change the integral limits.
So when, x = (1/3), so from equation (6) we have,
$ \Rightarrow \dfrac{1}{3} - \dfrac{2}{3} = \dfrac{t}{3}$
$ \Rightarrow t = - 1$
Now when, x = (2/3), so from equation (6) we have,
$ \Rightarrow \dfrac{2}{3} - \dfrac{2}{3} = \dfrac{t}{3}$
$ \Rightarrow t = 0$
So integral limits is changed from (-1 to 0)
Now substitute these values in equation (5) we have,
$ \Rightarrow {I_2} = \int_{\dfrac{1}{3}}^{\dfrac{2}{3}} {{e^{9{{\left( {x - \dfrac{2}{3}} \right)}^2}}}dx} = \int_{ - 1}^0 {{e^{9{{\left( {\dfrac{t}{3}} \right)}^2}}}dt} = \int_{ - 1}^0 {{e^{{t^2}}}dt} $............... (7)
Now substitute the value from equations (4) and (7) in equation (1) we have,
$ \Rightarrow I = \int_1^0 {{e^{{t^2}}}dt} + \int_{ - 1}^0 {{e^{{t^2}}}dt} $
Now according to definite integral property if function is even than $\int_{ - a}^0 {f\left( x \right)dx} = - \int_a^0 {f\left( x \right)dx} $ so use this property in the above equation we have,
As we all know that for function to be even f (-x) = f (x)
So in the above integral, $f\left( t \right) = {e^{{t^2}}}$
Therefore, $f\left( { - t} \right) = {e^{{{\left( { - t} \right)}^2}}} = {e^{{t^2}}}$
So the integral function is even.
$ \Rightarrow I = \int_1^0 {{e^{{t^2}}}dt} + \int_{ - 1}^0 {{e^{{t^2}}}dt} = \int_1^0 {{e^{{t^2}}}dt} - \int_1^0 {{e^{{t^2}}}dt} $
$ \Rightarrow I = \int_1^0 {{e^{{t^2}}}dt} - \int_1^0 {{e^{{t^2}}}dt} = 0$
So this is the required answer.
Hence option (C) is the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember is that according to definite integral property, $\int_{ - a}^0 {f\left( x \right)dx} = - \int_a^0 {f\left( x \right)dx} $ if and only if the function f (x) is even, and the condition of even function is, f (-x) = f (x).so first simplify the integral using integration by substitution as above then applied above described properties we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

