
The value of f(0) so that the function $f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}},x=0$ continuous at $x=0$ , is
(a) 1
(b) 0
(c) 2
(d) -1
Answer
518.4k+ views
Hint: To find value of f(0) when the function $f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}$ is continuous at $x=0$ , we will use the rule that a function is continuous at $x=c$ if $f\left( c \right)=\displaystyle \lim_{x \to c}f\left( x \right)$ .
We will substitute $x=0$ in this rule and find the limits. If the limit is in $\dfrac{0}{0}$ form , then we will have to use L-Hospital’s rule.
Complete step by step solution:
We have to find the value of f(0) so that the function $f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}$ continuous at $x=0$ . We know that a function is continuous at $x=c$ if
$f\left( c \right)=\displaystyle \lim_{x \to c}f\left( x \right)$
We are given that $f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}$ is continuous at $x=0$ . Then, we can write
$f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}$
Let us apply the limit. We know that $\displaystyle \lim_{x \to 0}\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{\displaystyle \lim_{x \to 0}f\left( x \right)}{\displaystyle \lim_{x \to 0}g\left( x \right)}$
$\begin{align}
& \Rightarrow f\left( 0 \right)=\dfrac{\log \left( 1+0\cdot \tan 0 \right)}{\sin 0} \\
& \Rightarrow f\left( 0 \right)=\dfrac{\log \left( 1 \right)}{\sin 0}=\dfrac{0}{0} \\
\end{align}$
We obtained the limit as $\dfrac{0}{0}$ form which is an indeterminate form. Thus, we have to use L-Hospital’s rule. This rule states that
$\displaystyle \lim_{x \to c}\dfrac{p\left( x \right)}{q\left( x \right)}=\displaystyle \lim_{x \to c}\dfrac{p'\left( x \right)}{q'\left( x \right)}$
The given function is of the above form. Thus, we have to differentiate the numerator and denominator.
Let us consider the limit as
$\begin{align}
& f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}=\displaystyle \lim_{x \to 0}\dfrac{p\left( x \right)}{q\left( x \right)} \\
& \Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{p'\left( x \right)}{q'\left( x \right)}...\left( i \right) \\
\end{align}$
Here, $p\left( x \right)=\log \left( 1+{{x}^{2}}\tan x \right)$ . Let us differentiate this function with respect to x.
We know that $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ . Also, we will have to apply chain rule.
$\begin{align}
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \dfrac{d}{dx}\left( 1+{{x}^{2}}\tan x \right) \\
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ \dfrac{d}{dx}\left( 1 \right)+\dfrac{d}{dx}\left( {{x}^{2}}\tan x \right) \right] \\
\end{align}$
We know that the derivative of a constant is 0.
$\begin{align}
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ 0+\dfrac{d}{dx}\left( {{x}^{2}}\tan x \right) \right] \\
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \dfrac{d}{dx}\left( {{x}^{2}}\tan x \right) \\
\end{align}$
Now, let us apply the product rule.
$\Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ {{x}^{2}}\dfrac{d}{dx}\left( \tan x \right)+\tan x\dfrac{d}{dx}\left( {{x}^{2}} \right) \right]$
We know that $\dfrac{d}{dx}\tan x={{\sec }^{2}}x$ and $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ .
$\begin{align}
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ {{x}^{2}}{{\sec }^{2}}x+2x\tan x \right] \\
& \Rightarrow p'\left( x \right)=\dfrac{{{x}^{2}}{{\sec }^{2}}x+2x\tan x}{1+{{x}^{2}}\tan x}...\left( ii \right) \\
\end{align}$
Now, let us consider the denominator of the given function to be $q\left( x \right)$ .
$\Rightarrow q\left( x \right)=\sin {{x}^{3}}$
Let us differentiate the above function with respect to x. For this, we will have to use chain rule. We know that $\dfrac{d}{dx}\sin x=\cos x$ .
$\Rightarrow q'\left( x \right)=\cos x\times \dfrac{d}{dx}{{x}^{3}}$
We know that $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ . Therefore, the above derivative becomes
$\Rightarrow q'\left( x \right)=3{{x}^{2}}\cos x...\left( iii \right)$
Now, let us substitute (ii) and (iii) in (i).
$\begin{align}
& \Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{\dfrac{{{x}^{2}}{{\sec }^{2}}x+2x\tan x}{1+{{x}^{2}}\tan x}}{3{{x}^{2}}\cos x} \\
& \Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{x}^{2}}{{\sec }^{2}}x+2x\tan x}{\left( 1+{{x}^{2}}\tan x \right)3{{x}^{2}}\cos x} \\
\end{align}$
Let us take ${{x}^{2}}$ outside from the numerator.
$\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{x}^{2}}\left( {{\sec }^{2}}x+2\cdot \dfrac{\tan x}{x} \right)}{\left( 1+{{x}^{2}}\tan x \right)3{{x}^{2}}\cos x}$
We can now cancel ${{x}^{2}}$ from the numerator and denominator.
$\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{\sec }^{2}}x+2\cdot \dfrac{\tan x}{x}}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}$
We can write the above limit as
$\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\left[ \dfrac{{{\sec }^{2}}x}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}+\dfrac{2\cdot \dfrac{\tan x}{x}}{\left( 1+{{x}^{2}}\tan x \right)3\cos x} \right]$
We know that $\displaystyle \lim_{x \to c}\left[ f\left( x \right)+g\left( x \right) \right]=\displaystyle \lim_{x \to c}f\left( x \right)+\displaystyle \lim_{x \to c}g\left( x \right)$ .
$\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{\sec }^{2}}x}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}+\displaystyle \lim_{x \to 0}\dfrac{2\cdot \dfrac{\tan x}{x}}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}$
We can write the above limit as
\[\Rightarrow f\left( 0 \right)=\dfrac{\displaystyle \lim_{x \to 0}{{\sec }^{2}}x}{\displaystyle \lim_{x \to 0}\left( 1+{{x}^{2}}\tan x \right)3\cos x}+\dfrac{2\cdot \displaystyle \lim_{x \to 0}\dfrac{\tan x}{x}}{\displaystyle \lim_{x \to 0}\left( 1+{{x}^{2}}\tan x \right)3\cos x}\]
Let us apply the limits. We know that \[\displaystyle \lim_{x \to 0}\dfrac{\tan x}{x}=1\] .
\[\begin{align}
& \Rightarrow f\left( 0 \right)=\dfrac{{{\sec }^{2}}0}{\left( 1+0\cdot \tan 0 \right)3\cos 0}+\dfrac{2\times 1}{\left( 1+0\cdot \tan 0 \right)3\cos 0} \\
& \Rightarrow f\left( 0 \right)=\dfrac{1}{1\times 3\times 1}+\dfrac{2}{1\times 3\times 1} \\
& \Rightarrow f\left( 0 \right)=\dfrac{1+2}{1\times 3\times 1}=\dfrac{3}{3}=1 \\
\end{align}\]
Therefore, the value of $f\left( 0 \right)$ is 1.
So, the correct answer is “Option A”.
Note: Students must read the values carefully as they may misunderstand $\sin {{x}^{3}}$ as ${{\sin }^{3}}x$ . They must know the derivatives of basic functions and the properties of the derivatives. They should also know the properties of limits and L'Hospital's rule. We took ${{x}^{2}}$ outside from the numerator because when we apply the limits before doing this, again the limit will be of the indeterminate form.
We will substitute $x=0$ in this rule and find the limits. If the limit is in $\dfrac{0}{0}$ form , then we will have to use L-Hospital’s rule.
Complete step by step solution:
We have to find the value of f(0) so that the function $f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}$ continuous at $x=0$ . We know that a function is continuous at $x=c$ if
$f\left( c \right)=\displaystyle \lim_{x \to c}f\left( x \right)$
We are given that $f\left( x \right)=\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}$ is continuous at $x=0$ . Then, we can write
$f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}$
Let us apply the limit. We know that $\displaystyle \lim_{x \to 0}\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{\displaystyle \lim_{x \to 0}f\left( x \right)}{\displaystyle \lim_{x \to 0}g\left( x \right)}$
$\begin{align}
& \Rightarrow f\left( 0 \right)=\dfrac{\log \left( 1+0\cdot \tan 0 \right)}{\sin 0} \\
& \Rightarrow f\left( 0 \right)=\dfrac{\log \left( 1 \right)}{\sin 0}=\dfrac{0}{0} \\
\end{align}$
We obtained the limit as $\dfrac{0}{0}$ form which is an indeterminate form. Thus, we have to use L-Hospital’s rule. This rule states that
$\displaystyle \lim_{x \to c}\dfrac{p\left( x \right)}{q\left( x \right)}=\displaystyle \lim_{x \to c}\dfrac{p'\left( x \right)}{q'\left( x \right)}$
The given function is of the above form. Thus, we have to differentiate the numerator and denominator.
Let us consider the limit as
$\begin{align}
& f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{\log \left( 1+{{x}^{2}}\tan x \right)}{\sin {{x}^{3}}}=\displaystyle \lim_{x \to 0}\dfrac{p\left( x \right)}{q\left( x \right)} \\
& \Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{p'\left( x \right)}{q'\left( x \right)}...\left( i \right) \\
\end{align}$
Here, $p\left( x \right)=\log \left( 1+{{x}^{2}}\tan x \right)$ . Let us differentiate this function with respect to x.
We know that $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ . Also, we will have to apply chain rule.
$\begin{align}
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \dfrac{d}{dx}\left( 1+{{x}^{2}}\tan x \right) \\
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ \dfrac{d}{dx}\left( 1 \right)+\dfrac{d}{dx}\left( {{x}^{2}}\tan x \right) \right] \\
\end{align}$
We know that the derivative of a constant is 0.
$\begin{align}
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ 0+\dfrac{d}{dx}\left( {{x}^{2}}\tan x \right) \right] \\
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \dfrac{d}{dx}\left( {{x}^{2}}\tan x \right) \\
\end{align}$
Now, let us apply the product rule.
$\Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ {{x}^{2}}\dfrac{d}{dx}\left( \tan x \right)+\tan x\dfrac{d}{dx}\left( {{x}^{2}} \right) \right]$
We know that $\dfrac{d}{dx}\tan x={{\sec }^{2}}x$ and $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ .
$\begin{align}
& \Rightarrow p'\left( x \right)=\dfrac{1}{1+{{x}^{2}}\tan x}\times \left[ {{x}^{2}}{{\sec }^{2}}x+2x\tan x \right] \\
& \Rightarrow p'\left( x \right)=\dfrac{{{x}^{2}}{{\sec }^{2}}x+2x\tan x}{1+{{x}^{2}}\tan x}...\left( ii \right) \\
\end{align}$
Now, let us consider the denominator of the given function to be $q\left( x \right)$ .
$\Rightarrow q\left( x \right)=\sin {{x}^{3}}$
Let us differentiate the above function with respect to x. For this, we will have to use chain rule. We know that $\dfrac{d}{dx}\sin x=\cos x$ .
$\Rightarrow q'\left( x \right)=\cos x\times \dfrac{d}{dx}{{x}^{3}}$
We know that $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ . Therefore, the above derivative becomes
$\Rightarrow q'\left( x \right)=3{{x}^{2}}\cos x...\left( iii \right)$
Now, let us substitute (ii) and (iii) in (i).
$\begin{align}
& \Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{\dfrac{{{x}^{2}}{{\sec }^{2}}x+2x\tan x}{1+{{x}^{2}}\tan x}}{3{{x}^{2}}\cos x} \\
& \Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{x}^{2}}{{\sec }^{2}}x+2x\tan x}{\left( 1+{{x}^{2}}\tan x \right)3{{x}^{2}}\cos x} \\
\end{align}$
Let us take ${{x}^{2}}$ outside from the numerator.
$\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{x}^{2}}\left( {{\sec }^{2}}x+2\cdot \dfrac{\tan x}{x} \right)}{\left( 1+{{x}^{2}}\tan x \right)3{{x}^{2}}\cos x}$
We can now cancel ${{x}^{2}}$ from the numerator and denominator.
$\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{\sec }^{2}}x+2\cdot \dfrac{\tan x}{x}}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}$
We can write the above limit as
$\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\left[ \dfrac{{{\sec }^{2}}x}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}+\dfrac{2\cdot \dfrac{\tan x}{x}}{\left( 1+{{x}^{2}}\tan x \right)3\cos x} \right]$
We know that $\displaystyle \lim_{x \to c}\left[ f\left( x \right)+g\left( x \right) \right]=\displaystyle \lim_{x \to c}f\left( x \right)+\displaystyle \lim_{x \to c}g\left( x \right)$ .
$\Rightarrow f\left( 0 \right)=\displaystyle \lim_{x \to 0}\dfrac{{{\sec }^{2}}x}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}+\displaystyle \lim_{x \to 0}\dfrac{2\cdot \dfrac{\tan x}{x}}{\left( 1+{{x}^{2}}\tan x \right)3\cos x}$
We can write the above limit as
\[\Rightarrow f\left( 0 \right)=\dfrac{\displaystyle \lim_{x \to 0}{{\sec }^{2}}x}{\displaystyle \lim_{x \to 0}\left( 1+{{x}^{2}}\tan x \right)3\cos x}+\dfrac{2\cdot \displaystyle \lim_{x \to 0}\dfrac{\tan x}{x}}{\displaystyle \lim_{x \to 0}\left( 1+{{x}^{2}}\tan x \right)3\cos x}\]
Let us apply the limits. We know that \[\displaystyle \lim_{x \to 0}\dfrac{\tan x}{x}=1\] .
\[\begin{align}
& \Rightarrow f\left( 0 \right)=\dfrac{{{\sec }^{2}}0}{\left( 1+0\cdot \tan 0 \right)3\cos 0}+\dfrac{2\times 1}{\left( 1+0\cdot \tan 0 \right)3\cos 0} \\
& \Rightarrow f\left( 0 \right)=\dfrac{1}{1\times 3\times 1}+\dfrac{2}{1\times 3\times 1} \\
& \Rightarrow f\left( 0 \right)=\dfrac{1+2}{1\times 3\times 1}=\dfrac{3}{3}=1 \\
\end{align}\]
Therefore, the value of $f\left( 0 \right)$ is 1.
So, the correct answer is “Option A”.
Note: Students must read the values carefully as they may misunderstand $\sin {{x}^{3}}$ as ${{\sin }^{3}}x$ . They must know the derivatives of basic functions and the properties of the derivatives. They should also know the properties of limits and L'Hospital's rule. We took ${{x}^{2}}$ outside from the numerator because when we apply the limits before doing this, again the limit will be of the indeterminate form.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

