
The value of $ \dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7/6}^{5/6} sec\left( {\pi x} \right)dx $ is
Answer
483.3k+ views
Hint: First consider $ \pi x $ as t. and then differentiate t with respect to x. Substitute the obtained values accordingly in the given trigonometric expression. As we have changed the given expression, the limits also will be changed according to the values of x and t. And then find the integration of secant function using the below mentioned formula.
Formula used:
Integration of $ \int secdx = \log \left| {secx + \tan x} \right| $
Complete step-by-step answer:
We are given to find the value of $ \dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7/6}^{5/6} sec\left( {\pi x} \right)dx $
Let us first consider $ \pi x $ as t.
$ t = \pi x $
On differentiating the above equation with respect to x, we get
$ \dfrac{d}{{dx}}t = \dfrac{d}{{dx}}\left( {\pi x} \right) $
$ \Rightarrow \dfrac{{dt}}{{dx}} = {\pi}\dfrac{{dx}}{{dx}} = {\pi} $
$ \Rightarrow dx = \dfrac{{dt}}{{\pi}} $
Substituting the obtained value of $ dx $ and $ \pi x $ , we get
$ \Rightarrow \dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7{\pi}/6}^{5{\pi}/6} \dfrac{{sect}}{{\pi}}dt $ .
The limits change when x is replaced by the terms of t as $ x = \dfrac{5}{6} \Rightarrow t = \dfrac{{5{\pi}}}{6} $ and $ x = \dfrac{7}{6} \Rightarrow t = \dfrac{{7{\pi}}}{6} $ .
Taking out $ {\pi} $ which is in the denominator, we get
$ \Rightarrow \dfrac{{{{\pi}^2}}}{{\ln 3}} \times \dfrac{1}{{\pi}}\int \nolimits_{7{\pi}/6}^{5{\pi}/6} sectdt = \dfrac{{\pi}}{{\ln 3}}\int \nolimits_{7{\pi}/6}^{5{\pi}/6} sectdt $
Now apply the integration formula $ \int secdx = \log \left| {secx + \tan x} \right| $ as x is equal to t.
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\left. {\log \left| {secx + \tan x} \right|} \right|_{7{\pi}/6}^{5{\pi}/6} $
Applying the limits, we get
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {sec\;\dfrac{{5{\pi}}}{6} + \tan \;\dfrac{{5{\pi}}}{6}} \right) - \left( {sec\;\dfrac{{7{\pi}}}{6} + \tan\; \dfrac{{7{\pi}}}{6}} \right)} \right| $
$ \dfrac{{5{\pi}}}{6} $ is also equal to 150 degrees and $ \dfrac{{7{\pi}}}{6} $ is also equal to 210 degrees.
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {sec\;{{150}^ \circ } + \tan \;{{150}^ \circ }} \right) - \left( {sec\;{{210}^ \circ } + \tan \;{{210}^ \circ }} \right)} \right| $
The value of $ sec\;{150^ \circ } = - \dfrac{2}{{\sqrt 3 }} $ , $ \tan\;{150^ \circ } = - \dfrac{1}{{\sqrt 3 }} $ , $ sec\;{210^ \circ } = - \dfrac{2}{{\sqrt 3 }} $ and $ \tan\;{210^ \circ } = \dfrac{1}{{\sqrt 3 }} $
Therefore,
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {sec\;{{150}^ \circ } + \tan \;{{150}^ \circ }} \right) - \left( {sec\;{{210}^ \circ } + \tan\;{{210}^ \circ }} \right)} \right| = \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {\dfrac{{ - 2}}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right) - \left( {\dfrac{{ - 2}}{{\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}} \right)} \right| $
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\dfrac{{ - 2}}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }} - \dfrac{{ - 2}}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right| = \dfrac{{\pi}}{{\ln 3}}\log \left| { - \dfrac{2}{{\sqrt 3 }}} \right| = \dfrac{{\pi}}{{\ln 3}}\log \dfrac{2}{{\sqrt 3 }} $
Therefore, the value of $ \dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7/6}^{5/6} sec\left( {\pi x} \right)dx $ is $ \dfrac{{\pi}}{{\ln 3}}\log \dfrac{2}{{\sqrt 3 }} $
So, the correct answer is “$ \dfrac{{\pi}}{{\ln 3}}\log \dfrac{2}{{\sqrt 3 }} $ ”.
Note: We can also write secant as the reciprocal of cosine and then solve the integration. Here we have taken the integration of secant in terms of “log” which is defined for base 10. We can also consider it as “ln” which is defined for base ‘e’, e is the exponential function. Be careful while calculating the differentiation and integration.
Formula used:
Integration of $ \int secdx = \log \left| {secx + \tan x} \right| $
Complete step-by-step answer:
We are given to find the value of $ \dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7/6}^{5/6} sec\left( {\pi x} \right)dx $
Let us first consider $ \pi x $ as t.
$ t = \pi x $
On differentiating the above equation with respect to x, we get
$ \dfrac{d}{{dx}}t = \dfrac{d}{{dx}}\left( {\pi x} \right) $
$ \Rightarrow \dfrac{{dt}}{{dx}} = {\pi}\dfrac{{dx}}{{dx}} = {\pi} $
$ \Rightarrow dx = \dfrac{{dt}}{{\pi}} $
Substituting the obtained value of $ dx $ and $ \pi x $ , we get
$ \Rightarrow \dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7{\pi}/6}^{5{\pi}/6} \dfrac{{sect}}{{\pi}}dt $ .
The limits change when x is replaced by the terms of t as $ x = \dfrac{5}{6} \Rightarrow t = \dfrac{{5{\pi}}}{6} $ and $ x = \dfrac{7}{6} \Rightarrow t = \dfrac{{7{\pi}}}{6} $ .
Taking out $ {\pi} $ which is in the denominator, we get
$ \Rightarrow \dfrac{{{{\pi}^2}}}{{\ln 3}} \times \dfrac{1}{{\pi}}\int \nolimits_{7{\pi}/6}^{5{\pi}/6} sectdt = \dfrac{{\pi}}{{\ln 3}}\int \nolimits_{7{\pi}/6}^{5{\pi}/6} sectdt $
Now apply the integration formula $ \int secdx = \log \left| {secx + \tan x} \right| $ as x is equal to t.
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\left. {\log \left| {secx + \tan x} \right|} \right|_{7{\pi}/6}^{5{\pi}/6} $
Applying the limits, we get
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {sec\;\dfrac{{5{\pi}}}{6} + \tan \;\dfrac{{5{\pi}}}{6}} \right) - \left( {sec\;\dfrac{{7{\pi}}}{6} + \tan\; \dfrac{{7{\pi}}}{6}} \right)} \right| $
$ \dfrac{{5{\pi}}}{6} $ is also equal to 150 degrees and $ \dfrac{{7{\pi}}}{6} $ is also equal to 210 degrees.
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {sec\;{{150}^ \circ } + \tan \;{{150}^ \circ }} \right) - \left( {sec\;{{210}^ \circ } + \tan \;{{210}^ \circ }} \right)} \right| $
The value of $ sec\;{150^ \circ } = - \dfrac{2}{{\sqrt 3 }} $ , $ \tan\;{150^ \circ } = - \dfrac{1}{{\sqrt 3 }} $ , $ sec\;{210^ \circ } = - \dfrac{2}{{\sqrt 3 }} $ and $ \tan\;{210^ \circ } = \dfrac{1}{{\sqrt 3 }} $
Therefore,
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {sec\;{{150}^ \circ } + \tan \;{{150}^ \circ }} \right) - \left( {sec\;{{210}^ \circ } + \tan\;{{210}^ \circ }} \right)} \right| = \dfrac{{\pi}}{{\ln 3}}\log \left| {\left( {\dfrac{{ - 2}}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right) - \left( {\dfrac{{ - 2}}{{\sqrt 3 }} + \dfrac{1}{{\sqrt 3 }}} \right)} \right| $
$ \Rightarrow \dfrac{{\pi}}{{\ln 3}}\log \left| {\dfrac{{ - 2}}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }} - \dfrac{{ - 2}}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}} \right| = \dfrac{{\pi}}{{\ln 3}}\log \left| { - \dfrac{2}{{\sqrt 3 }}} \right| = \dfrac{{\pi}}{{\ln 3}}\log \dfrac{2}{{\sqrt 3 }} $
Therefore, the value of $ \dfrac{{{{\pi}^2}}}{{\ln 3}}\int \nolimits_{7/6}^{5/6} sec\left( {\pi x} \right)dx $ is $ \dfrac{{\pi}}{{\ln 3}}\log \dfrac{2}{{\sqrt 3 }} $
So, the correct answer is “$ \dfrac{{\pi}}{{\ln 3}}\log \dfrac{2}{{\sqrt 3 }} $ ”.
Note: We can also write secant as the reciprocal of cosine and then solve the integration. Here we have taken the integration of secant in terms of “log” which is defined for base 10. We can also consider it as “ln” which is defined for base ‘e’, e is the exponential function. Be careful while calculating the differentiation and integration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
